These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


532 related items for PubMed ID: 19420452

  • 1. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M, Algaer E, Böhm MC, Müller-Plathe F.
    Nanotechnology; 2009 Mar 18; 20(11):115704. PubMed ID: 19420452
    [Abstract] [Full Text] [Related]

  • 2. Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M, Leroy F, Algaer E, Böhm MC, Müller-Plathe F.
    Nanotechnology; 2010 Feb 19; 21(7):75704. PubMed ID: 20081296
    [Abstract] [Full Text] [Related]

  • 3. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M, Schulte J, Leroy F, Müller-Plathe F, Böhm MC.
    J Comput Chem; 2011 Jan 15; 32(1):121-33. PubMed ID: 20645298
    [Abstract] [Full Text] [Related]

  • 4. The intriguing thermal conductivity of ice nanotubes.
    Guo Z, Zhang D, Zhai Y, Gong XG.
    Nanotechnology; 2010 Jul 16; 21(28):285706. PubMed ID: 20585161
    [Abstract] [Full Text] [Related]

  • 5. Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M, Müller-Plathe F, Böhm MC.
    J Chem Phys; 2011 Nov 14; 135(18):184905. PubMed ID: 22088079
    [Abstract] [Full Text] [Related]

  • 6. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X, Zhang G, Li B.
    J Phys Condens Matter; 2011 Jun 01; 23(21):215301. PubMed ID: 21555836
    [Abstract] [Full Text] [Related]

  • 7. Thermal conductivity of carbon nanotube cross-bar structures.
    Evans WJ, Keblinski P.
    Nanotechnology; 2010 Nov 26; 21(47):475704. PubMed ID: 21030762
    [Abstract] [Full Text] [Related]

  • 8. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z, Buehler MJ.
    Nanotechnology; 2009 May 06; 20(18):185701. PubMed ID: 19420624
    [Abstract] [Full Text] [Related]

  • 9. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P.
    Nat Mater; 2003 Nov 06; 2(11):731-4. PubMed ID: 14556001
    [Abstract] [Full Text] [Related]

  • 10. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q, Liu C, Wang X, Fan S.
    Nanotechnology; 2009 Apr 08; 20(14):145702. PubMed ID: 19420532
    [Abstract] [Full Text] [Related]

  • 11. Thermal conductivity of carbon nanotubes with quantum correction via heat capacity.
    Wu MC, Hsu JY.
    Nanotechnology; 2009 Apr 08; 20(14):145401. PubMed ID: 19420526
    [Abstract] [Full Text] [Related]

  • 12. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.
    Li B, Wang J, Wang L, Zhang G.
    Chaos; 2005 Mar 08; 15(1):15121. PubMed ID: 15836298
    [Abstract] [Full Text] [Related]

  • 13. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V, Roy AK, Froudakis G, Farmer BL.
    Nanoscale; 2011 Sep 01; 3(9):3679-84. PubMed ID: 21808788
    [Abstract] [Full Text] [Related]

  • 14. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes.
    Pradhan NR, Duan H, Liang J, Iannacchione GS.
    Nanotechnology; 2009 Jun 17; 20(24):245705. PubMed ID: 19471077
    [Abstract] [Full Text] [Related]

  • 15. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW, Cao BY, Guo ZY.
    Nanotechnology; 2009 Dec 09; 20(49):495503. PubMed ID: 19893145
    [Abstract] [Full Text] [Related]

  • 16. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA, Alaghemandi M, Böhm MC, Müller-Plathe F.
    J Phys Chem B; 2009 Nov 05; 113(44):14596-603. PubMed ID: 19863137
    [Abstract] [Full Text] [Related]

  • 17. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF, Kaul PB, Prakash V.
    Nanotechnology; 2010 Jun 11; 21(23):235704. PubMed ID: 20472943
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Chirality and Diameter Influence on Thermal Conductivity of Single-Walled Carbon Nanotubes.
    Feng Y, Zhu J, Tang DW.
    J Nanosci Nanotechnol; 2015 Apr 11; 15(4):3092-7. PubMed ID: 26353541
    [Abstract] [Full Text] [Related]

  • 20. Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes.
    Kim UJ, Gutiérrez HR, Kim JP, Eklund PC.
    J Phys Chem B; 2005 Dec 15; 109(49):23358-65. PubMed ID: 16375307
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.