These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
292 related items for PubMed ID: 19420894
1. Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps. Zhang H, Gao A, Li F, Zhang G, Ho HI, Liao W. Yakugaku Zasshi; 2009 May; 129(5):623-30. PubMed ID: 19420894 [Abstract] [Full Text] [Related]
2. Molecular mechanisms underlying the tetrandrine-mediated reversal of the fluconazole resistance of Candida albicans. Zhang X, Guo H, Gao L, Song Y, Li S, Zhang H. Pharm Biol; 2013 Jun; 51(6):749-52. PubMed ID: 23527892 [Abstract] [Full Text] [Related]
3. Fungicidal synergism of fluconazole and cyclosporine in Candida albicans is not dependent on multidrug efflux transporters encoded by the CDR1, CDR2, CaMDR1, and FLU1 genes. Marchetti O, Moreillon P, Entenza JM, Vouillamoz J, Glauser MP, Bille J, Sanglard D. Antimicrob Agents Chemother; 2003 May; 47(5):1565-70. PubMed ID: 12709323 [Abstract] [Full Text] [Related]
4. Expression of Major Efflux Pumps in Fluconazole-Resistant Candida albicans. Pourakbari B, Teymuri M, Mahmoudi S, Valian SK, Movahedi Z, Eshaghi H, Mamishi S. Infect Disord Drug Targets; 2017 May; 17(3):178-184. PubMed ID: 28558643 [Abstract] [Full Text] [Related]
5. [Investigation of the expression levels of efflux pumps in fluconazole-resistant Candida albicans isolates]. Gulat S, Doluca Dereli M. Mikrobiyol Bul; 2014 Apr; 48(2):325-34. PubMed ID: 24819270 [Abstract] [Full Text] [Related]
6. [Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps]. Kalkandelen KT, Doluca Dereli M. Mikrobiyol Bul; 2015 Oct; 49(4):609-18. PubMed ID: 26649419 [Abstract] [Full Text] [Related]
7. Alcohol dehydrogenase I expression correlates with CDR1, CDR2 and FLU1 expression in Candida albicans from patients with vulvovaginal candidiasis. Guo H, Zhang XL, Gao LQ, Li SX, Song YJ, Zhang H. Chin Med J (Engl); 2013 Oct; 126(11):2098-102. PubMed ID: 23769565 [Abstract] [Full Text] [Related]
8. Tetrandrine enhances the antifungal activity of fluconazole in a murine model of disseminated candidiasis. Shi J, Li S, Gao A, Zhu K, Zhang H. Phytomedicine; 2018 Jul 15; 46():21-31. PubMed ID: 30097119 [Abstract] [Full Text] [Related]
9. Synergistic mechanism for tetrandrine on fluconazole against Candida albicans through the mitochondrial aerobic respiratory metabolism pathway. Guo H, Xie SM, Li SX, Song YJ, Lv XL, Zhang H. J Med Microbiol; 2014 Jul 15; 63(Pt 7):988-996. PubMed ID: 24790082 [Abstract] [Full Text] [Related]
10. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD. Antimicrob Agents Chemother; 2008 Nov 15; 52(11):3851-62. PubMed ID: 18710914 [Abstract] [Full Text] [Related]
11. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J. Antimicrob Agents Chemother; 1995 Nov 15; 39(11):2378-86. PubMed ID: 8585712 [Abstract] [Full Text] [Related]
12. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Infect Immun; 2003 Aug 15; 71(8):4333-40. PubMed ID: 12874310 [Abstract] [Full Text] [Related]
13. Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. Maebashi K, Niimi M, Kudoh M, Fischer FJ, Makimura K, Niimi K, Piper RJ, Uchida K, Arisawa M, Cannon RD, Yamaguchi H. J Antimicrob Chemother; 2001 May 15; 47(5):527-36. PubMed ID: 11328762 [Abstract] [Full Text] [Related]
14. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Shao J, Zhang M, Wang T, Li Y, Wang C. Pharm Biol; 2016 May 15; 54(6):984-92. PubMed ID: 26459663 [Abstract] [Full Text] [Related]
15. Investigation of fluconazole susceptibility to Candida albicans by MALDI-TOF MS and real-time PCR for CDR1, CDR2, MDR1 and ERG11. Maenchantrarath C, Khumdee P, Samosornsuk S, Mungkornkaew N, Samosornsuk W. BMC Microbiol; 2022 Jun 10; 22(1):153. PubMed ID: 35689195 [Abstract] [Full Text] [Related]
16. Impact of Farnesol as a Modulator of Efflux Pumps in a Fluconazole-Resistant Strain of Candida albicans. Černáková L, Dižová S, Gášková D, Jančíková I, Bujdáková H. Microb Drug Resist; 2019 Jun 10; 25(6):805-812. PubMed ID: 30785845 [Abstract] [Full Text] [Related]
17. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. Sun LM, Liao K, Liang S, Yu PH, Wang DY. J Appl Microbiol; 2015 Apr 10; 118(4):826-38. PubMed ID: 25641229 [Abstract] [Full Text] [Related]
18. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Calabrese D, Bille J, Sanglard D. Microbiology (Reading); 2000 Nov 10; 146 ( Pt 11)():2743-2754. PubMed ID: 11065353 [Abstract] [Full Text] [Related]
19. Eucalyptal D Enhances the Antifungal Effect of Fluconazole on Fluconazole-Resistant Candida albicans by Competitively Inhibiting Efflux Pump. Xu J, Liu R, Sun F, An L, Shang Z, Kong L, Yang M. Front Cell Infect Microbiol; 2019 Nov 10; 9():211. PubMed ID: 31281800 [Abstract] [Full Text] [Related]