These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Hepcidin inhibits apical iron uptake in intestinal cells. Mena NP, Esparza A, Tapia V, Valdés P, Núñez MT. Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G192-8. PubMed ID: 17962361 [Abstract] [Full Text] [Related]
5. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model. Moriya M, Linder MC. Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G301-9. PubMed ID: 16179601 [Abstract] [Full Text] [Related]
8. In vitro approaches to evaluate palytoxin-induced toxicity and cell death in intestinal cells. Valverde I, Lago J, Vieites JM, Cabado AG. J Appl Toxicol; 2008 Apr; 28(3):294-302. PubMed ID: 17604342 [Abstract] [Full Text] [Related]
9. Asymmetrical regulation of scavenger receptor class B type I by apical and basolateral stimuli using Caco-2 cells. Peretti N, Delvin E, Sinnett D, Marcil V, Garofalo C, Levy E. J Cell Biochem; 2007 Feb 01; 100(2):421-33. PubMed ID: 16927335 [Abstract] [Full Text] [Related]
10. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice. Tobin V, Le Gall M, Fioramonti X, Stolarczyk E, Blazquez AG, Klein C, Prigent M, Serradas P, Cuif MH, Magnan C, Leturque A, Brot-Laroche E. Diabetes; 2008 Mar 01; 57(3):555-62. PubMed ID: 18057092 [Abstract] [Full Text] [Related]
11. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. Le Gall M, Tobin V, Stolarczyk E, Dalet V, Leturque A, Brot-Laroche E. J Cell Physiol; 2007 Dec 01; 213(3):834-43. PubMed ID: 17786952 [Abstract] [Full Text] [Related]
13. Impaired uptake of beta-carotene by Caco-2 human intestinal cells in the presence of iron. Bengtsson A, Scheers N, Andlid T, Alminger ML, Sandberg AS, Svanberg U. Int J Food Sci Nutr; 2009 Apr 01; 60 Suppl 5():125-35. PubMed ID: 19194811 [Abstract] [Full Text] [Related]
14. S-adenosyl-L-methionine: transcellular transport and uptake by Caco-2 cells and hepatocytes. McMillan JM, Walle UK, Walle T. J Pharm Pharmacol; 2005 May 01; 57(5):599-605. PubMed ID: 15901349 [Abstract] [Full Text] [Related]
15. Zolmitriptan uptake by human intestinal epithelial Caco-2 cells. Yu LS, Zhao NP, Yao TW, Zeng S. Pharmazie; 2006 Oct 01; 61(10):862-5. PubMed ID: 17069426 [Abstract] [Full Text] [Related]
16. Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model. Zerounian NR, Redekosky C, Malpe R, Linder MC. Am J Physiol Gastrointest Liver Physiol; 2003 May 01; 284(5):G739-47. PubMed ID: 12540371 [Abstract] [Full Text] [Related]
17. Differentiation stage-dependent preferred uptake of basolateral (systemic) glutamine into Caco-2 cells results in its accumulation in proteins with a role in cell-cell interaction. Lenaerts K, Mariman E, Bouwman F, Renes J. FEBS J; 2005 Jul 01; 272(13):3350-64. PubMed ID: 15978041 [Abstract] [Full Text] [Related]
18. Differentiation-dependent redistribution of heparan sulfate in epithelial intestinal Caco-2 cells leads to basolateral entry of cytomegalovirus. Esclatine A, Bellon A, Michelson S, Servin AL, Quéro AM, Géniteau-Legendre M. Virology; 2001 Oct 10; 289(1):23-33. PubMed ID: 11601914 [Abstract] [Full Text] [Related]
19. Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity. Fischer W, Praetor K, Metzner L, Neubert RH, Brandsch M. Eur J Pharm Biopharm; 2008 Oct 10; 70(2):486-92. PubMed ID: 18577448 [Abstract] [Full Text] [Related]
20. Parameters influencing intestinal epithelial permeability and microparticle uptake in vitro. Moyes SM, Smyth SH, Shipman A, Long S, Morris JF, Carr KE. Int J Pharm; 2007 Jun 07; 337(1-2):133-41. PubMed ID: 17306478 [Abstract] [Full Text] [Related] Page: [Next] [New Search]