These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 19423837

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness.
    Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R, Menold E, Steiner T, Bärtsch P, Knauth M.
    J Cereb Blood Flow Metab; 2007 May; 27(5):1064-71. PubMed ID: 17024110
    [Abstract] [Full Text] [Related]

  • 6. The cerebral etiology of high-altitude cerebral edema and acute mountain sickness.
    Hackett PH.
    Wilderness Environ Med; 1999 May; 10(2):97-109. PubMed ID: 10442158
    [Abstract] [Full Text] [Related]

  • 7. High altitude cerebral edema and acute mountain sickness. A pathophysiology update.
    Hackett PH.
    Adv Exp Med Biol; 1999 May; 474():23-45. PubMed ID: 10634991
    [Abstract] [Full Text] [Related]

  • 8. Evidence for cerebral edema, cerebral perfusion, and intracranial pressure elevations in acute mountain sickness.
    DiPasquale DM, Muza SR, Gunn AM, Li Z, Zhang Q, Harris NS, Strangman GE.
    Brain Behav; 2016 Mar; 6(3):e00437. PubMed ID: 27099800
    [Abstract] [Full Text] [Related]

  • 9. Respiratory alkalinization and posterior cerebral artery dilatation predict acute mountain sickness severity during 10 h normobaric hypoxia.
    Barclay H, Mukerji S, Kayser B, O'Donnell T, Tzeng YC, Hill S, Knapp K, Legg S, Frei D, Fan JL.
    Exp Physiol; 2021 Jan; 106(1):175-190. PubMed ID: 33347666
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. [High altitude cerebral oedema].
    Dumont L, Lysakowski C, Kayser B.
    Ann Fr Anesth Reanim; 2003 Apr; 22(4):320-4. PubMed ID: 12818324
    [Abstract] [Full Text] [Related]

  • 15. Sustained high-altitude hypoxia increases cerebral oxygen metabolism.
    Smith ZM, Krizay E, Guo J, Shin DD, Scadeng M, Dubowitz DJ.
    J Appl Physiol (1985); 2013 Jan 01; 114(1):11-8. PubMed ID: 23019310
    [Abstract] [Full Text] [Related]

  • 16. Cerebral pressure-flow and metabolic responses to sustained hypoxia: effect of CO2.
    Yang SP, Bergö GW, Krasney E, Krasney JA.
    J Appl Physiol (1985); 1994 Jan 01; 76(1):303-13. PubMed ID: 8175522
    [Abstract] [Full Text] [Related]

  • 17. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?
    Turner REF, Gatterer H, Falla M, Lawley JS.
    J Appl Physiol (1985); 2021 Jul 01; 131(1):313-325. PubMed ID: 33856254
    [Abstract] [Full Text] [Related]

  • 18. Effects of hypobaric hypoxia on cerebral autoregulation.
    Subudhi AW, Panerai RB, Roach RC.
    Stroke; 2010 Apr 01; 41(4):641-6. PubMed ID: 20185774
    [Abstract] [Full Text] [Related]

  • 19. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function.
    Bailey DM, Evans KA, James PE, McEneny J, Young IS, Fall L, Gutowski M, Kewley E, McCord JM, Møller K, Ainslie PN.
    J Physiol; 2009 Jan 15; 587(1):73-85. PubMed ID: 18936082
    [Abstract] [Full Text] [Related]

  • 20. Frontiers of hypoxia research: acute mountain sickness.
    Roach RC, Hackett PH.
    J Exp Biol; 2001 Sep 15; 204(Pt 18):3161-70. PubMed ID: 11581330
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.