These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
475 related items for PubMed ID: 19425561
21. Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography. Jeon KJ, Lee JM, Lee E, Lee W. Nanotechnology; 2009 Apr 01; 20(13):135502. PubMed ID: 19420501 [Abstract] [Full Text] [Related]
22. Photolytic metallization of au nanoclusters and electrically conducting micrometer long nanostructures on a DNA scaffold. Kundu S, Maheshwari V, Saraf RF. Langmuir; 2008 Jan 15; 24(2):551-5. PubMed ID: 18095721 [Abstract] [Full Text] [Related]
23. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Lee KJ, Lee J, Hwang H, Reitmeier ZJ, Davis RF, Rogers JA, Nuzzo RG. Small; 2005 Dec 15; 1(12):1164-8. PubMed ID: 17193410 [No Abstract] [Full Text] [Related]
24. Two-probe electrical measurements in transmission electron microscopes--behavioral control of tungsten microwires. Costa PM, Fang X, Wang S, He Y, Bando Y, Mitome M, Zou J, Huang H, Golberg D. Microsc Res Tech; 2009 Feb 15; 72(2):93-100. PubMed ID: 18837439 [Abstract] [Full Text] [Related]
25. Highly ordered palladium nanodots and nanowires from switchable block copolymer thin films. Bhoje Gowd E, Nandan B, Vyas MK, Bigall NC, Eychmüller A, Schlörb H, Stamm M. Nanotechnology; 2009 Oct 14; 20(41):415302. PubMed ID: 19762948 [Abstract] [Full Text] [Related]
26. Electrical transport properties of single undoped and n-type doped InN nanowires. Richter T, Lüth H, Schäpers T, Meijers R, Jeganathan K, Estévez Hernández S, Calarco R, Marso M. Nanotechnology; 2009 Oct 07; 20(40):405206. PubMed ID: 19738304 [Abstract] [Full Text] [Related]
27. Pd cluster nanowires as highly efficient catalysts for selective hydrogenation reactions. Zhang ZC, Zhang X, Yu QY, Liu ZC, Xu CM, Gao JS, Zhuang J, Wang X. Chemistry; 2012 Feb 27; 18(9):2639-45. PubMed ID: 22282407 [Abstract] [Full Text] [Related]
28. Statistical study of effective anisotropy field in ordered ferromagnetic nanowire arrays. Zhao S, Clime L, Chan K, Normandin F, Roberge H, Yelon A, Cochrane RW, Veres T. J Nanosci Nanotechnol; 2007 Jan 27; 7(1):381-6. PubMed ID: 17455508 [Abstract] [Full Text] [Related]
29. Selective formation of a latticed nanostructure with the precise alignment of DNA-templated gold nanowires. Kim HJ, Roh Y, Hong B. Langmuir; 2010 Dec 07; 26(23):18315-9. PubMed ID: 20973556 [Abstract] [Full Text] [Related]
30. The formation of TiO(2) nanowires directly from nanoparticles. Wang CC, Yu CY, Kei CC, Lee CT, Perng TP. Nanotechnology; 2009 Jul 15; 20(28):285601. PubMed ID: 19550018 [Abstract] [Full Text] [Related]
31. Formation of copper nanowires by electroless deposition using microtubules as templates. Valenzuela K, Raghavan S, Deymier PA, Hoying J. J Nanosci Nanotechnol; 2008 Jul 15; 8(7):3416-21. PubMed ID: 19051888 [Abstract] [Full Text] [Related]
32. Organic electronics: molecules as bipolar conductors. Cravino A, Sariciftci NS. Nat Mater; 2003 Jun 15; 2(6):360-1. PubMed ID: 12776098 [No Abstract] [Full Text] [Related]
33. Bismuth nanowires for potential applications in nanoscale electronics technology. Cronin SB, Lin YM, Rabin O, Black MR, Dresselhaus G, Dresselhaus MS, Gai PL. Microsc Microanal; 2002 Feb 15; 8(1):58-63. PubMed ID: 12533205 [Abstract] [Full Text] [Related]
34. Direct electron-beam writing of highly conductive wires in functionalized fullerene films. Gibbons FP, Manickam M, Preece JA, Palmer RE, Robinson AP. Small; 2009 Dec 15; 5(23):2750-5. PubMed ID: 19722186 [Abstract] [Full Text] [Related]
35. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Lopez-Sanchez JA, Dimitratos N, Miedziak P, Ntainjua E, Edwards JK, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Hutchings GJ. Phys Chem Chem Phys; 2008 Apr 14; 10(14):1921-30. PubMed ID: 18368185 [Abstract] [Full Text] [Related]
36. Photoinitiated growth of sub-7 nm silver nanowires within a chemically active organic nanotubular template. Eisele DM, Berlepsch HV, Böttcher C, Stevenson KJ, Vanden Bout DA, Kirstein S, Rabe JP. J Am Chem Soc; 2010 Feb 24; 132(7):2104-5. PubMed ID: 20104895 [Abstract] [Full Text] [Related]
37. Integration of thin-film-fracture-based nanowires into microchip fabrication. Jebril S, Elbahri M, Titazu G, Subannajui K, Essa S, Niebelschütz F, Röhlig CC, Cimalla V, Ambacher O, Schmidt B, Kabiraj D, Avasti D, Adelung R. Small; 2008 Dec 24; 4(12):2214-21. PubMed ID: 18972459 [Abstract] [Full Text] [Related]
38. Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires. Wang G, Park J, Wexler D, Park MS, Ahn JH. Inorg Chem; 2007 Jun 11; 46(12):4778-80. PubMed ID: 17497852 [Abstract] [Full Text] [Related]
39. Microtubule-based gold nanowires and nanowire arrays. Zhou JC, Gao Y, Martinez-Molares AA, Jing X, Yan D, Lau J, Hamasaki T, Ozkan CS, Ozkan M, Hu E, Dunn B. Small; 2008 Sep 11; 4(9):1507-15. PubMed ID: 18752207 [Abstract] [Full Text] [Related]
40. Smooth and conductive DNA-templated Cu₂O nanowires: growth morphology, spectroscopic and electrical characterization. Hassanien R, Al-Said SA, Siller L, Little R, Wright NG, Houlton A, Horrocks BR. Nanotechnology; 2012 Feb 24; 23(7):075601. PubMed ID: 22261265 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]