These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


463 related items for PubMed ID: 19429064

  • 1. Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats.
    Lesage F, Brieu N, Dubeau S, Beaumont E.
    Neurosci Lett; 2009 Apr 17; 454(1):105-9. PubMed ID: 19429064
    [Abstract] [Full Text] [Related]

  • 2. Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI.
    Endo T, Spenger C, Westman E, Tominaga T, Olson L.
    Exp Neurol; 2008 Jan 17; 209(1):155-60. PubMed ID: 17988666
    [Abstract] [Full Text] [Related]

  • 3. Manganese-enhanced magnetic resonance imaging in experimental spinal cord injury: correlation between T1-weighted changes and Mn(2+) concentrations.
    Martirosyan NL, Bennett KM, Theodore N, Preul MC.
    Neurosurgery; 2010 Jan 17; 66(1):131-6. PubMed ID: 20023543
    [Abstract] [Full Text] [Related]

  • 4. Training improves the electrophysiological properties of lumbar neurons and locomotion after thoracic spinal cord injury in rats.
    Beaumont E, Kaloustian S, Rousseau G, Cormery B.
    Neurosci Res; 2008 Nov 17; 62(3):147-54. PubMed ID: 18760313
    [Abstract] [Full Text] [Related]

  • 5. Functional reorganization in rat somatosensory cortex assessed by fMRI: elastic image registration based on structural landmarks in fMRI images and application to spinal cord injured rats.
    Sydekum E, Baltes C, Ghosh A, Mueggler T, Schwab ME, Rudin M.
    Neuroimage; 2009 Feb 15; 44(4):1345-54. PubMed ID: 19015037
    [Abstract] [Full Text] [Related]

  • 6. Serotonergic fiber sprouting to external anal sphincter motoneurons after spinal cord contusion.
    Holmes GM, Van Meter MJ, Beattie MS, Bresnahan JC.
    Exp Neurol; 2005 May 15; 193(1):29-42. PubMed ID: 15817262
    [Abstract] [Full Text] [Related]

  • 7. Cortical reorganization in NT3-treated experimental spinal cord injury: Functional magnetic resonance imaging.
    Ramu J, Bockhorst KH, Grill RJ, Mogatadakala KV, Narayana PA.
    Exp Neurol; 2007 Mar 15; 204(1):58-65. PubMed ID: 17112518
    [Abstract] [Full Text] [Related]

  • 8. Sprouting of CGRP primary afferents in lumbosacral spinal cord precedes emergence of bladder activity after spinal injury.
    Zinck ND, Rafuse VF, Downie JW.
    Exp Neurol; 2007 Apr 15; 204(2):777-90. PubMed ID: 17331502
    [Abstract] [Full Text] [Related]

  • 9. Spinal cord injury in neonates alters respiratory motor output via supraspinal mechanisms.
    Zimmer MB, Goshgarian HG.
    Exp Neurol; 2007 Jul 15; 206(1):137-45. PubMed ID: 17559837
    [Abstract] [Full Text] [Related]

  • 10. Increased spinal c-Fos expression with noxious and non-noxious peripheral stimulation after severe spinal contusion.
    Berrocal YA, Pearse DD, Andrade CM, Hechtman JF, Puentes R, Eaton MJ.
    Neurosci Lett; 2007 Feb 08; 413(1):58-62. PubMed ID: 17161529
    [Abstract] [Full Text] [Related]

  • 11. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials.
    Fujiki M, Kobayashi H, Inoue R, Ishii K.
    Exp Neurol; 2004 Jun 08; 187(2):468-77. PubMed ID: 15144873
    [Abstract] [Full Text] [Related]

  • 12. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study.
    Jurkiewicz MT, Mikulis DJ, McIlroy WE, Fehlings MG, Verrier MC.
    Neurorehabil Neural Repair; 2007 Jun 08; 21(6):527-38. PubMed ID: 17507643
    [Abstract] [Full Text] [Related]

  • 13. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury.
    Hains BC, Saab CY, Waxman SG.
    Brain; 2005 Oct 08; 128(Pt 10):2359-71. PubMed ID: 16109750
    [Abstract] [Full Text] [Related]

  • 14. Endogenous recovery of injured spinal cord: longitudinal in vivo magnetic resonance imaging.
    Narayana PA, Grill RJ, Chacko T, Vang R.
    J Neurosci Res; 2004 Dec 01; 78(5):749-59. PubMed ID: 15499591
    [Abstract] [Full Text] [Related]

  • 15. Role of Neurotrophin 3 in spinal neuroplasticity in rats subjected to cord transection.
    Yang HJ, Yang XY, Ba YC, Pang JX, Meng BL, Lin N, Li LY, Dong XY, Zhao Y, Tian CF, Wang TH.
    Growth Factors; 2009 Aug 01; 27(4):237-46. PubMed ID: 19513915
    [Abstract] [Full Text] [Related]

  • 16. Manganese enhanced magnetic resonance imaging in a contusion model of spinal cord injury in rats: correlation with motor function.
    Walder N, Petter-Puchner AH, Brejnikow M, Redl H, Essig M, Stieltjes B.
    Invest Radiol; 2008 May 01; 43(5):277-83. PubMed ID: 18424947
    [Abstract] [Full Text] [Related]

  • 17. Dietary restriction started after spinal cord injury improves functional recovery.
    Plunet WT, Streijger F, Lam CK, Lee JH, Liu J, Tetzlaff W.
    Exp Neurol; 2008 Sep 01; 213(1):28-35. PubMed ID: 18585708
    [Abstract] [Full Text] [Related]

  • 18. Evidence that descending serotonergic systems protect spinal cord plasticity against the disruptive effect of uncontrollable stimulation.
    Crown ED, Grau JW.
    Exp Neurol; 2005 Nov 01; 196(1):164-76. PubMed ID: 16139268
    [Abstract] [Full Text] [Related]

  • 19. Chronic spinal cord injury induced changes in the responses of thalamic neurons.
    Hubscher CH, Johnson RD.
    Exp Neurol; 2006 Jan 01; 197(1):177-88. PubMed ID: 16266704
    [Abstract] [Full Text] [Related]

  • 20. Combination of TMS and fMRI reveals a specific pattern of reorganization in M1 in patients after complete spinal cord injury.
    Lotze M, Laubis-Herrmann U, Topka H.
    Restor Neurol Neurosci; 2006 Jan 01; 24(2):97-107. PubMed ID: 16720945
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.