These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 19435317

  • 1. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome.
    Domon B, Bodenmiller B, Carapito C, Hao Z, Huehmer A, Aebersold R.
    J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.
    Bridon G, Bonneil E, Muratore-Schroeder T, Caron-Lizotte O, Thibault P.
    J Proteome Res; 2012 Feb 03; 11(2):927-40. PubMed ID: 22059388
    [Abstract] [Full Text] [Related]

  • 4. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ.
    J Proteome Res; 2008 Feb 03; 7(2):687-97. PubMed ID: 18034456
    [Abstract] [Full Text] [Related]

  • 5. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments.
    Courcelles M, Bridon G, Lemieux S, Thibault P.
    J Proteome Res; 2012 Jul 06; 11(7):3753-65. PubMed ID: 22668510
    [Abstract] [Full Text] [Related]

  • 6. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry.
    Chang EJ, Archambault V, McLachlin DT, Krutchinsky AN, Chait BT.
    Anal Chem; 2004 Aug 01; 76(15):4472-83. PubMed ID: 15283590
    [Abstract] [Full Text] [Related]

  • 7. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3.
    Palumbo AM, Reid GE.
    Anal Chem; 2008 Dec 15; 80(24):9735-47. PubMed ID: 19012417
    [Abstract] [Full Text] [Related]

  • 8. Analysis of histidine phosphorylation using tandem MS and ion-electron reactions.
    Kleinnijenhuis AJ, Kjeldsen F, Kallipolitis B, Haselmann KF, Jensen ON.
    Anal Chem; 2007 Oct 01; 79(19):7450-6. PubMed ID: 17822303
    [Abstract] [Full Text] [Related]

  • 9. Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry.
    Thalassinos K, Grabenauer M, Slade SE, Hilton GR, Bowers MT, Scrivens JH.
    Anal Chem; 2009 Jan 01; 81(1):248-54. PubMed ID: 19117454
    [Abstract] [Full Text] [Related]

  • 10. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer.
    Raijmakers R, Kraiczek K, de Jong AP, Mohammed S, Heck AJ.
    Anal Chem; 2010 Feb 01; 82(3):824-32. PubMed ID: 20058876
    [Abstract] [Full Text] [Related]

  • 11. Phosphoproteome analysis of mouse liver using immobilized metal affinity purification and linear ion trap mass spectrometry.
    Jin WH, Dai J, Zhou H, Xia QC, Zou HF, Zeng R.
    Rapid Commun Mass Spectrom; 2004 Feb 01; 18(18):2169-76. PubMed ID: 15378723
    [Abstract] [Full Text] [Related]

  • 12. Mass spectrometric analysis of synapsins in Drosophila melanogaster and identification of novel phosphorylation sites.
    Nuwal T, Heo S, Lubec G, Buchner E.
    J Proteome Res; 2011 Feb 04; 10(2):541-50. PubMed ID: 21028912
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D, Moon S, Kim Y, Ho WK, Kim K, Kang Y, Jun H, Kim Y.
    J Proteome Res; 2012 Apr 06; 11(4):2206-23. PubMed ID: 22276854
    [Abstract] [Full Text] [Related]

  • 15. Data-dependent electron transfer dissociation of large peptides and medium size proteins in a QTOF instrument on a liquid chromatography timescale.
    Hartmer RG, Kaplan DA, Stoermer C, Lubeck M, Park MA.
    Rapid Commun Mass Spectrom; 2009 Aug 06; 23(15):2273-82. PubMed ID: 19575399
    [Abstract] [Full Text] [Related]

  • 16. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine.
    Li QR, Fan KX, Li RX, Dai J, Wu CC, Zhao SL, Wu JR, Shieh CH, Zeng R.
    Rapid Commun Mass Spectrom; 2010 Mar 06; 24(6):823-32. PubMed ID: 20187088
    [Abstract] [Full Text] [Related]

  • 17. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X, Wu D, Zhao Y, Wong BH, Guo L.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan 01; 879(1):25-34. PubMed ID: 21130716
    [Abstract] [Full Text] [Related]

  • 18. Reproducible isolation of distinct, overlapping segments of the phosphoproteome.
    Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R.
    Nat Methods; 2007 Mar 01; 4(3):231-7. PubMed ID: 17293869
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.