These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


310 related items for PubMed ID: 19436892

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy.
    Yea KH, Lee S, Kyong JB, Choo J, Lee EK, Joo SW, Lee S.
    Analyst; 2005 Jul; 130(7):1009-11. PubMed ID: 15965522
    [Abstract] [Full Text] [Related]

  • 4. Self-assembled coordination nanoparticles from nucleotides and lanthanide ions with doped-boronic acid-fluorescein for detection of cyanide in the presence of Cu2+ in water.
    Kulchat S, Chaicham A, Ekgasit S, Tumcharern G, Tuntulani T, Tomapatanaget B.
    Talanta; 2012 Jan 30; 89():264-9. PubMed ID: 22284490
    [Abstract] [Full Text] [Related]

  • 5. A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples.
    Lou X, Zhang Y, Qin J, Li Z.
    Chemistry; 2011 Aug 22; 17(35):9691-6. PubMed ID: 21735497
    [Abstract] [Full Text] [Related]

  • 6. Coumarin-Cu(II) ensemble-based cyanide sensing chemodosimeter.
    Jung HS, Han JH, Kim ZH, Kang C, Kim JS.
    Org Lett; 2011 Oct 07; 13(19):5056-9. PubMed ID: 21875122
    [Abstract] [Full Text] [Related]

  • 7. Thermoresponsive copolymer containing a coumarin-spiropyran conjugate: reusable fluorescent sensor for cyanide anion detection in water.
    Shiraishi Y, Sumiya S, Manabe K, Hirai T.
    ACS Appl Mater Interfaces; 2011 Dec 07; 3(12):4649-56. PubMed ID: 22043965
    [Abstract] [Full Text] [Related]

  • 8. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.
    Jung KH, Lee KH.
    Anal Chem; 2015 Sep 15; 87(18):9308-14. PubMed ID: 26320594
    [Abstract] [Full Text] [Related]

  • 9. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions.
    Momeni S, Ahmadi R, Safavi A, Nabipour I.
    Talanta; 2017 Dec 01; 175():514-521. PubMed ID: 28842026
    [Abstract] [Full Text] [Related]

  • 10. A novel cyanide ion sensing approach based on Raman scattering for the detection of environmental cyanides.
    Yan F, Gopal Reddy CV, Zhang Y, Vo-Dinh T.
    Ecotoxicol Environ Saf; 2010 Sep 01; 73(6):1490-4. PubMed ID: 20541261
    [Abstract] [Full Text] [Related]

  • 11. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging.
    Chen X, Nam SW, Kim GH, Song N, Jeong Y, Shin I, Kim SK, Kim J, Park S, Yoon J.
    Chem Commun (Camb); 2010 Dec 21; 46(47):8953-5. PubMed ID: 20976329
    [Abstract] [Full Text] [Related]

  • 12. A fluorescent sensor for selective detection of cyanide using mesoporous graphitic carbon(IV) nitride.
    Lee EZ, Lee SU, Heo NS, Stucky GD, Jun YS, Hong WH.
    Chem Commun (Camb); 2012 Apr 25; 48(33):3942-4. PubMed ID: 22422044
    [Abstract] [Full Text] [Related]

  • 13. A new Dual-Channel Chemosensor Based on Chemodosimeter Approach for Detecting Cyanide in Aqueous Solution: a Combination of Experimental and Theoretical Studies.
    Lee JJ, Lee SY, Bok KH, Kim C.
    J Fluoresc; 2015 Sep 25; 25(5):1449-59. PubMed ID: 26245457
    [Abstract] [Full Text] [Related]

  • 14. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells.
    Hou F, Huang L, Xi P, Cheng J, Zhao X, Xie G, Shi Y, Cheng F, Yao X, Bai D, Zeng Z.
    Inorg Chem; 2012 Feb 20; 51(4):2454-60. PubMed ID: 22303885
    [Abstract] [Full Text] [Related]

  • 15. Acridinium salt based fluorescent and colorimetric chemosensor for the detection of cyanide in water.
    Yang YK, Tae J.
    Org Lett; 2006 Dec 07; 8(25):5721-3. PubMed ID: 17134256
    [Abstract] [Full Text] [Related]

  • 16. Discovery of a sensitive Cu(II)-cyanide "off-on" sensor based on new C-glycosyl triazolyl bis-amino acid scaffold.
    Tang YH, Qu Y, Song Z, He XP, Xie J, Hua J, Chen GR.
    Org Biomol Chem; 2012 Jan 21; 10(3):555-60. PubMed ID: 22101917
    [Abstract] [Full Text] [Related]

  • 17. A coumarin-indole based colorimetric and "turn on" fluorescent probe for cyanide.
    Xu Y, Dai X, Zhao BX.
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar 05; 138():164-8. PubMed ID: 25490042
    [Abstract] [Full Text] [Related]

  • 18. A chemodosimetric probe based on a conjugated oxidized bis-indolyl system for selective naked-eye sensing of cyanide ions in water.
    Kumari N, Jha S, Bhattacharya S.
    Chem Asian J; 2012 Dec 05; 7(12):2805-12. PubMed ID: 23042685
    [Abstract] [Full Text] [Related]

  • 19. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment.
    Niu HT, Su D, Jiang X, Yang W, Yin Z, He J, Cheng JP.
    Org Biomol Chem; 2008 Sep 07; 6(17):3038-40. PubMed ID: 18698458
    [Abstract] [Full Text] [Related]

  • 20. An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water.
    Lou X, Zhang L, Qin J, Li Z.
    Chem Commun (Camb); 2008 Nov 30; (44):5848-50. PubMed ID: 19009102
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.