These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


403 related items for PubMed ID: 19438003

  • 21. Fabrication of gold-silver core-shell nanoparticles for performing as ultrabright SERS-nanotags inside human ovarian cancer cells.
    Hada AM, Potara M, Suarasan S, Vulpoi A, Nagy-Simon T, Licarete E, Astilean S.
    Nanotechnology; 2019 Aug 02; 30(31):315701. PubMed ID: 30974419
    [Abstract] [Full Text] [Related]

  • 22. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate.
    Wang N, Yang HF, Zhu X, Zhang R, Wang Y, Huang GF, Zhang ZR.
    Nanotechnology; 2009 Aug 05; 20(31):315603. PubMed ID: 19597257
    [Abstract] [Full Text] [Related]

  • 23. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 24. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.
    Yu Q, Huang H, Peng X, Ye Z.
    Nanoscale; 2011 Sep 01; 3(9):3868-75. PubMed ID: 21837336
    [Abstract] [Full Text] [Related]

  • 25. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates.
    Huang J, Chen F, Zhang Q, Zhan Y, Ma D, Xu K, Zhao Y.
    ACS Appl Mater Interfaces; 2015 Mar 18; 7(10):5725-35. PubMed ID: 25731067
    [Abstract] [Full Text] [Related]

  • 26. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L, Zhou J, Yuan X, Petti L, Chen J, Jia Z, Mormile P.
    Talanta; 2014 Jun 18; 123():161-8. PubMed ID: 24725879
    [Abstract] [Full Text] [Related]

  • 27. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL, Hsu TC, Liu YC, Yang KH, Tsai HY.
    Anal Chim Acta; 2014 Jan 02; 806():188-96. PubMed ID: 24331055
    [Abstract] [Full Text] [Related]

  • 28. Surface-enhanced Raman scattering-active silver nanostructures with two domains.
    Chang CC, Yang KH, Liu YC, Yu CC.
    Anal Chim Acta; 2012 Jan 04; 709():91-7. PubMed ID: 22122936
    [Abstract] [Full Text] [Related]

  • 29. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK, Drmosh QA, Mohamedkhair AK.
    Chem Asian J; 2021 Jul 05; 16(13):1807-1819. PubMed ID: 34009749
    [Abstract] [Full Text] [Related]

  • 30. An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate.
    Chen H, Wang Y, Dong S, Wang E.
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May 15; 64(2):343-8. PubMed ID: 16384736
    [Abstract] [Full Text] [Related]

  • 31. Surface-enhanced Raman scattering (SERS) spectra of hemoglobin of mouse and rabbit with self-assembled nano-silver film.
    Kang Y, Si M, Zhu Y, Miao L, Xu G.
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May 15; 108():177-80. PubMed ID: 23474476
    [Abstract] [Full Text] [Related]

  • 32. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy.
    Zhai WL, Li DW, Qu LL, Fossey JS, Long YT.
    Nanoscale; 2012 Jan 07; 4(1):137-42. PubMed ID: 22064940
    [Abstract] [Full Text] [Related]

  • 33. SERS and DFT studies of 2-(trichloroacetyl)pyrrole chemisorbed on the surface of silver and gold coated thin films: In perspective of biosensor applications.
    Premkumar R, Hussain S, Koyambo-Konzapa SJ, Jayram ND, Meera MR, Mathavan T, Benial AMF.
    J Mol Recognit; 2021 Nov 07; 34(11):e2921. PubMed ID: 34235798
    [Abstract] [Full Text] [Related]

  • 34. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ, Willets KA.
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013 Nov 07; 5(2):180-9. PubMed ID: 23335562
    [Abstract] [Full Text] [Related]

  • 35. A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles.
    Mai FD, Hsu TC, Liu YC, Yang KH, Chen BC.
    Chem Commun (Camb); 2011 Mar 14; 47(10):2958-60. PubMed ID: 21243131
    [Abstract] [Full Text] [Related]

  • 36. Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate.
    Zeiri L, Rechav K, Porat Z, Zeiri Y.
    Appl Spectrosc; 2012 Mar 14; 66(3):294-9. PubMed ID: 22449306
    [Abstract] [Full Text] [Related]

  • 37. Optimized core-shell Au@Ag nanoparticles for label-free Raman determination of trace Rhodamine B with cancer risk in food product.
    Wang H, Guo X, Fu S, Yang T, Wen Y, Yang H.
    Food Chem; 2015 Dec 01; 188():137-42. PubMed ID: 26041175
    [Abstract] [Full Text] [Related]

  • 38. Facile fabrication of SERS arrays through galvanic replacement of silver onto electrochemically deposited copper micropatterns.
    Ke X, Lu B, Hao J, Zhang J, Qiao H, Zhang Z, Xing C, Yang W, Zhang B, Tang J.
    Chemphyschem; 2012 Dec 07; 13(17):3786-9. PubMed ID: 23015311
    [Abstract] [Full Text] [Related]

  • 39. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS.
    Wu J, Zhang F, Zhang H.
    Carbohydr Polym; 2012 Sep 01; 90(1):261-9. PubMed ID: 24751039
    [Abstract] [Full Text] [Related]

  • 40. The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper.
    Mabbott S, Larmour IA, Vishnyakov V, Xu Y, Graham D, Goodacre R.
    Analyst; 2012 Jun 21; 137(12):2791-8. PubMed ID: 22558633
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.