These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
403 related items for PubMed ID: 19438003
21. Fabrication of gold-silver core-shell nanoparticles for performing as ultrabright SERS-nanotags inside human ovarian cancer cells. Hada AM, Potara M, Suarasan S, Vulpoi A, Nagy-Simon T, Licarete E, Astilean S. Nanotechnology; 2019 Aug 02; 30(31):315701. PubMed ID: 30974419 [Abstract] [Full Text] [Related]
22. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate. Wang N, Yang HF, Zhu X, Zhang R, Wang Y, Huang GF, Zhang ZR. Nanotechnology; 2009 Aug 05; 20(31):315603. PubMed ID: 19597257 [Abstract] [Full Text] [Related]
30. An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate. Chen H, Wang Y, Dong S, Wang E. Spectrochim Acta A Mol Biomol Spectrosc; 2006 May 15; 64(2):343-8. PubMed ID: 16384736 [Abstract] [Full Text] [Related]
31. Surface-enhanced Raman scattering (SERS) spectra of hemoglobin of mouse and rabbit with self-assembled nano-silver film. Kang Y, Si M, Zhu Y, Miao L, Xu G. Spectrochim Acta A Mol Biomol Spectrosc; 2013 May 15; 108():177-80. PubMed ID: 23474476 [Abstract] [Full Text] [Related]
32. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Zhai WL, Li DW, Qu LL, Fossey JS, Long YT. Nanoscale; 2012 Jan 07; 4(1):137-42. PubMed ID: 22064940 [Abstract] [Full Text] [Related]
33. SERS and DFT studies of 2-(trichloroacetyl)pyrrole chemisorbed on the surface of silver and gold coated thin films: In perspective of biosensor applications. Premkumar R, Hussain S, Koyambo-Konzapa SJ, Jayram ND, Meera MR, Mathavan T, Benial AMF. J Mol Recognit; 2021 Nov 07; 34(11):e2921. PubMed ID: 34235798 [Abstract] [Full Text] [Related]
34. Surface-enhanced Raman scattering imaging using noble metal nanoparticles. Wilson AJ, Willets KA. Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013 Nov 07; 5(2):180-9. PubMed ID: 23335562 [Abstract] [Full Text] [Related]
35. A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles. Mai FD, Hsu TC, Liu YC, Yang KH, Chen BC. Chem Commun (Camb); 2011 Mar 14; 47(10):2958-60. PubMed ID: 21243131 [Abstract] [Full Text] [Related]
36. Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate. Zeiri L, Rechav K, Porat Z, Zeiri Y. Appl Spectrosc; 2012 Mar 14; 66(3):294-9. PubMed ID: 22449306 [Abstract] [Full Text] [Related]
37. Optimized core-shell Au@Ag nanoparticles for label-free Raman determination of trace Rhodamine B with cancer risk in food product. Wang H, Guo X, Fu S, Yang T, Wen Y, Yang H. Food Chem; 2015 Dec 01; 188():137-42. PubMed ID: 26041175 [Abstract] [Full Text] [Related]
38. Facile fabrication of SERS arrays through galvanic replacement of silver onto electrochemically deposited copper micropatterns. Ke X, Lu B, Hao J, Zhang J, Qiao H, Zhang Z, Xing C, Yang W, Zhang B, Tang J. Chemphyschem; 2012 Dec 07; 13(17):3786-9. PubMed ID: 23015311 [Abstract] [Full Text] [Related]
39. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS. Wu J, Zhang F, Zhang H. Carbohydr Polym; 2012 Sep 01; 90(1):261-9. PubMed ID: 24751039 [Abstract] [Full Text] [Related]
40. The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper. Mabbott S, Larmour IA, Vishnyakov V, Xu Y, Graham D, Goodacre R. Analyst; 2012 Jun 21; 137(12):2791-8. PubMed ID: 22558633 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]