These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 19438233
1. Elucidation of the proton transport mechanism in human carbonic anhydrase II. Maupin CM, McKenna R, Silverman DN, Voth GA. J Am Chem Soc; 2009 Jun 10; 131(22):7598-608. PubMed ID: 19438233 [Abstract] [Full Text] [Related]
2. Effect of active-site mutation at Asn67 on the proton transfer mechanism of human carbonic anhydrase II. Maupin CM, Zheng J, Tu C, McKenna R, Silverman DN, Voth GA. Biochemistry; 2009 Aug 25; 48(33):7996-8005. PubMed ID: 19634894 [Abstract] [Full Text] [Related]
3. Preferred orientations of His64 in human carbonic anhydrase II. Maupin CM, Voth GA. Biochemistry; 2007 Mar 20; 46(11):2938-47. PubMed ID: 17319695 [Abstract] [Full Text] [Related]
4. Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II. Zheng J, Avvaru BS, Tu C, McKenna R, Silverman DN. Biochemistry; 2008 Nov 18; 47(46):12028-36. PubMed ID: 18942852 [Abstract] [Full Text] [Related]
5. Water networks in fast proton transfer during catalysis by human carbonic anhydrase II. Mikulski R, West D, Sippel KH, Avvaru BS, Aggarwal M, Tu C, McKenna R, Silverman DN. Biochemistry; 2013 Jan 08; 52(1):125-31. PubMed ID: 23215152 [Abstract] [Full Text] [Related]
6. Structural and kinetic study of the extended active site for proton transfer in human carbonic anhydrase II. Domsic JF, Williams W, Fisher SZ, Tu C, Agbandje-McKenna M, Silverman DN, McKenna R. Biochemistry; 2010 Aug 03; 49(30):6394-9. PubMed ID: 20578724 [Abstract] [Full Text] [Related]
7. Speeding up proton transfer in a fast enzyme: kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II. Fisher SZ, Tu C, Bhatt D, Govindasamy L, Agbandje-McKenna M, McKenna R, Silverman DN. Biochemistry; 2007 Mar 27; 46(12):3803-13. PubMed ID: 17330962 [Abstract] [Full Text] [Related]
8. Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II. Maupin CM, Castillo N, Taraphder S, Tu C, McKenna R, Silverman DN, Voth GA. J Am Chem Soc; 2011 Apr 27; 133(16):6223-34. PubMed ID: 21452838 [Abstract] [Full Text] [Related]
9. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Fisher SZ, Maupin CM, Budayova-Spano M, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Voth GA, McKenna R. Biochemistry; 2007 Mar 20; 46(11):2930-7. PubMed ID: 17319692 [Abstract] [Full Text] [Related]
10. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. Fisher Z, Hernandez Prada JA, Tu C, Duda D, Yoshioka C, An H, Govindasamy L, Silverman DN, McKenna R. Biochemistry; 2005 Feb 01; 44(4):1097-105. PubMed ID: 15667203 [Abstract] [Full Text] [Related]
11. Proton transfer in a Thr200His mutant of human carbonic anhydrase II. Bhatt D, Tu C, Fisher SZ, Hernandez Prada JA, McKenna R, Silverman DN. Proteins; 2005 Nov 01; 61(2):239-45. PubMed ID: 16106378 [Abstract] [Full Text] [Related]
12. Kinetic and crystallographic studies of the role of tyrosine 7 in the active site of human carbonic anhydrase II. Mikulski R, Avvaru BS, Tu C, Case N, McKenna R, Silverman DN. Arch Biochem Biophys; 2011 Feb 15; 506(2):181-7. PubMed ID: 21145876 [Abstract] [Full Text] [Related]
13. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase. Fisher SZ, Kovalevsky AY, Domsic J, Mustyakimov M, Silverman DN, McKenna R, Langan P. Acta Crystallogr D Biol Crystallogr; 2010 Nov 15; 66(Pt 11):1178-83. PubMed ID: 21041933 [Abstract] [Full Text] [Related]
14. Structure and catalysis by carbonic anhydrase II: role of active-site tryptophan 5. Mikulski R, Domsic JF, Ling G, Tu C, Robbins AH, Silverman DN, McKenna R. Arch Biochem Biophys; 2011 Dec 15; 516(2):97-102. PubMed ID: 22001224 [Abstract] [Full Text] [Related]
15. Structural and kinetic analysis of proton shuttle residues in the active site of human carbonic anhydrase III. Elder I, Fisher Z, Laipis PJ, Tu C, McKenna R, Silverman DN. Proteins; 2007 Jul 01; 68(1):337-43. PubMed ID: 17427958 [Abstract] [Full Text] [Related]
16. Energetics and dynamics of the proton shuttle of carbonic anhydrase II. Raum HN, Fisher SZ, Weininger U. Cell Mol Life Sci; 2023 Sep 09; 80(10):286. PubMed ID: 37688664 [Abstract] [Full Text] [Related]
17. Neutron structure of human carbonic anhydrase II: a hydrogen-bonded water network "switch" is observed between pH 7.8 and 10.0. Fisher Z, Kovalevsky AY, Mustyakimov M, Silverman DN, McKenna R, Langan P. Biochemistry; 2011 Nov 08; 50(44):9421-3. PubMed ID: 21988105 [Abstract] [Full Text] [Related]
18. Coordination Dynamics of Zinc Triggers the Rate Determining Proton Transfer in Human Carbonic Anhydrase II. Paul TK, Taraphder S. Chemphyschem; 2020 Jul 02; 21(13):1455-1473. PubMed ID: 32329944 [Abstract] [Full Text] [Related]
19. Proton transport in carbonic anhydrase: Insights from molecular simulation. Maupin CM, Voth GA. Biochim Biophys Acta; 2010 Feb 02; 1804(2):332-41. PubMed ID: 19765680 [Abstract] [Full Text] [Related]
20. Coupling Protein Dynamics with Proton Transport in Human Carbonic Anhydrase II. Taraphder S, Maupin CM, Swanson JM, Voth GA. J Phys Chem B; 2016 Aug 25; 120(33):8389-404. PubMed ID: 27063577 [Abstract] [Full Text] [Related] Page: [Next] [New Search]