These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


372 related items for PubMed ID: 19439340

  • 1. PCE DNAPL degradation using ferrous iron solid mixture (ISM).
    Lee HK, Do SH, Batchelor B, Jo YH, Kong SH.
    Chemosphere; 2009 Aug; 76(8):1082-7. PubMed ID: 19439340
    [Abstract] [Full Text] [Related]

  • 2. Reductive dechlorination of chlorinated hydrocarbons as non-aqueous phase liquid (NAPL): preliminary investigation on effects of cement doses.
    Do SH, Batchelor B.
    Sci Total Environ; 2012 Jul 15; 430():82-7. PubMed ID: 22634553
    [Abstract] [Full Text] [Related]

  • 3. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor.
    Yu S, Semprini L.
    J Hazard Mater; 2009 Aug 15; 167(1-3):97-104. PubMed ID: 19179006
    [Abstract] [Full Text] [Related]

  • 4. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.
    Taghavy A, Costanza J, Pennell KD, Abriola LM.
    J Contam Hydrol; 2010 Nov 25; 118(3-4):128-42. PubMed ID: 20888664
    [Abstract] [Full Text] [Related]

  • 5. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept.
    Phenrat T, Kumloet I.
    Water Res; 2016 Dec 15; 107():19-28. PubMed ID: 27788401
    [Abstract] [Full Text] [Related]

  • 6. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F, Illangasekare TH, Phenrat T, Kim HJ, Lowry GV.
    J Contam Hydrol; 2012 Apr 01; 131(1-4):9-28. PubMed ID: 22326687
    [Abstract] [Full Text] [Related]

  • 7. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL.
    J Contam Hydrol; 2004 Oct 01; 74(1-4):265-82. PubMed ID: 15358496
    [Abstract] [Full Text] [Related]

  • 8. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks.
    Schaefer CE, Towne RM, Vainberg S, McCray JE, Steffan RJ.
    Environ Sci Technol; 2010 Jul 01; 44(13):4958-64. PubMed ID: 20524648
    [Abstract] [Full Text] [Related]

  • 9. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.
    Lee W, Batchelor B.
    Chemosphere; 2004 Sep 01; 56(10):999-1009. PubMed ID: 15268967
    [Abstract] [Full Text] [Related]

  • 10. Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone.
    Morrill PL, Sleep BE, Seepersad DJ, McMaster ML, Hood ED, LeBron C, Major DW, Edwards EA, Lollar BS.
    J Contam Hydrol; 2009 Nov 03; 110(1-2):60-71. PubMed ID: 19818530
    [Abstract] [Full Text] [Related]

  • 11. Reactivity of Fe(II)/cement systems in dechlorinating chlorinated ethylenes.
    Hwang I, Park HJ, Kang WH, Park JY.
    J Hazard Mater; 2005 Feb 14; 118(1-3):103-11. PubMed ID: 15721534
    [Abstract] [Full Text] [Related]

  • 12. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.
    Cho Y, Choi SI.
    Chemosphere; 2010 Nov 14; 81(7):940-5. PubMed ID: 20723967
    [Abstract] [Full Text] [Related]

  • 13. Enhanced Fenton's destruction of non-aqueous phase perchloroethylene in soil systems.
    Kang N, Hua I, Rao PS.
    Chemosphere; 2006 Jun 14; 63(10):1685-98. PubMed ID: 16324735
    [Abstract] [Full Text] [Related]

  • 14. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA, Lai YL.
    Chemosphere; 2006 Jun 14; 64(3):371-8. PubMed ID: 16466778
    [Abstract] [Full Text] [Related]

  • 15. Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals.
    Liang X, Philp RP, Butler EC.
    Chemosphere; 2009 Mar 14; 75(1):63-9. PubMed ID: 19111888
    [Abstract] [Full Text] [Related]

  • 16. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations.
    Yu S, Semprini L.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053
    [Abstract] [Full Text] [Related]

  • 17. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid.
    Ramsburg CA, Thornton CE, Christ JA.
    Environ Sci Technol; 2010 Dec 01; 44(23):9105-11. PubMed ID: 21053958
    [Abstract] [Full Text] [Related]

  • 18. Dechlorination of trichloroethylene formed from 1,1,2,2-tetrachloroethane by dehydrochlorination in Portland cement slurry including Fe(II).
    Jung B, Batchelor B.
    Chemosphere; 2008 Mar 01; 71(4):726-34. PubMed ID: 18068753
    [Abstract] [Full Text] [Related]

  • 19. Dip-angle influence on areal DNAPL recovery by co-solvent flooding with and without pre-flooding.
    Boyd GR, Li M, Husserl J, Ocampo-Gómez AM.
    J Contam Hydrol; 2006 Jan 10; 82(3-4):319-37. PubMed ID: 16303209
    [Abstract] [Full Text] [Related]

  • 20. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL, Siegrist RL, Illangasekare TH.
    J Contam Hydrol; 2008 Nov 14; 102(1-2):3-16. PubMed ID: 18774622
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.