These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
372 related items for PubMed ID: 19439340
21. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Doong RA, Lai YJ. Water Res; 2005 Jun; 39(11):2309-18. PubMed ID: 15941576 [Abstract] [Full Text] [Related]
22. Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate. Zhai X, Hua I, Rao PS, Lee LS. J Contam Hydrol; 2006 Jan 05; 82(1-2):61-74. PubMed ID: 16229923 [Abstract] [Full Text] [Related]
23. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid. Philips J, Springael D, Smolders E. Chemosphere; 2011 May 05; 83(7):991-6. PubMed ID: 21376368 [Abstract] [Full Text] [Related]
24. Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries. Jung B, Batchelor B. J Hazard Mater; 2008 Mar 21; 152(1):62-70. PubMed ID: 17707584 [Abstract] [Full Text] [Related]
25. Reductive dechlorination of DNAPL mixtures with Fe(II/III)-L and Fe(II)-C: Evaluation using a kinetic model for the competitions. Do SH, Jo SH, Roh JS, Im HJ, Park HB, Batchelor B. Sci Total Environ; 2018 May 15; 624():872-877. PubMed ID: 29274611 [Abstract] [Full Text] [Related]
31. Impact of surfactant-induced wettability alterations on DNAPL invasion in quartz and iron oxide-coated sand systems. Molnar IL, O'Carroll DM, Gerhard JI. J Contam Hydrol; 2011 Jan 25; 119(1-4):1-12. PubMed ID: 20880604 [Abstract] [Full Text] [Related]
32. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation. Page JW, Soga K, Illangasekare T. J Contam Hydrol; 2007 Dec 07; 94(3-4):215-34. PubMed ID: 17706832 [Abstract] [Full Text] [Related]
34. Modeling field-scale cosolvent flooding for DNAPL source zone remediation. Liang H, Falta RW. J Contam Hydrol; 2008 Feb 19; 96(1-4):1-16. PubMed ID: 17988760 [Abstract] [Full Text] [Related]
35. Comparison of hematite/Fe(II) systems with cement/Fe(II) systems in reductively dechlorinating trichloroethylene. Kim HS, Kang WH, Kim M, Park JY, Hwang I. Chemosphere; 2008 Oct 19; 73(5):813-9. PubMed ID: 18597815 [Abstract] [Full Text] [Related]
36. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones. Ramsburg CA, Pennell KD, Kibbey TC, Hayes KF. J Contam Hydrol; 2004 Oct 19; 74(1-4):105-31. PubMed ID: 15358489 [Abstract] [Full Text] [Related]
37. Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: a numerical simulation. Chu M, Kitanidis PK, McCarty PL. J Contam Hydrol; 2003 Aug 19; 65(1-2):79-100. PubMed ID: 12855202 [Abstract] [Full Text] [Related]
38. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions. Lee CC, Doong RA. Environ Sci Technol; 2011 Mar 15; 45(6):2301-7. PubMed ID: 21341692 [Abstract] [Full Text] [Related]
39. Reductive dechlorination pathways of tetrachloroethylene and trichloroethylene and subsequent transformation of their dechlorination products by mackinawite (FeS) in the presence of metals. Jeong HY, Kim H, Hayes KF. Environ Sci Technol; 2007 Nov 15; 41(22):7736-43. PubMed ID: 18075082 [Abstract] [Full Text] [Related]
40. Transformation of mackinawite to greigite by trichloroethylene and tetrachloroethylene. Lan Y, Elwood Madden AS, Butler EC. Environ Sci Process Impacts; 2016 Oct 12; 18(10):1266-1273. PubMed ID: 27711891 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]