These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
369 related items for PubMed ID: 19442961
1. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Prakash G, Agarwal A, Jacob S, Kumar DA, Agarwal A, Banerjee R. Am J Ophthalmol; 2009 Aug; 148(2):282-290.e2. PubMed ID: 19442961 [Abstract] [Full Text] [Related]
2. Comparative study of central corneal thickness measurement with slit-lamp optical coherence tomography and visante optical coherence tomography. Li H, Leung CK, Wong L, Cheung CY, Pang CP, Weinreb RN, Lam DS. Ophthalmology; 2008 May; 115(5):796-801.e2. PubMed ID: 17916376 [Abstract] [Full Text] [Related]
3. Influence of corneal curvature on central and paracentral pachymetry with optical coherence tomography. Wirbelauer C, Thannhäuser CL, Pham DT. Cornea; 2009 Apr; 28(3):254-60. PubMed ID: 19387224 [Abstract] [Full Text] [Related]
4. Agreement among 3 methods to measure corneal thickness: ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography. Li EY, Mohamed S, Leung CK, Rao SK, Cheng AC, Cheung CY, Lam DS. Ophthalmology; 2007 Oct; 114(10):1842-7. PubMed ID: 17507097 [Abstract] [Full Text] [Related]
5. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Chen S, Huang J, Wen D, Chen W, Huang D, Wang Q. Acta Ophthalmol; 2012 Aug; 90(5):449-55. PubMed ID: 20560892 [Abstract] [Full Text] [Related]
6. Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes. Prospero Ponce CM, Rocha KM, Smith SD, Krueger RR. J Cataract Refract Surg; 2009 Jun; 35(6):1055-62. PubMed ID: 19465292 [Abstract] [Full Text] [Related]
7. Evaluation of bilateral minimum thickness of normal corneas based on Fourier-domain optical coherence tomography. Prakash G, Ashok Kumar D, Agarwal A, Sarvanan Y, Jacob S, Agarwal A. J Cataract Refract Surg; 2010 Aug; 36(8):1365-72. PubMed ID: 20656161 [Abstract] [Full Text] [Related]
8. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera. Gonul S, Koktekir BE, Bakbak B, Gedik S. Arq Bras Oftalmol; 2014 Aug; 77(6):345-50. PubMed ID: 25627178 [Abstract] [Full Text] [Related]
9. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement. Kim JH, Lee D, Rhee KI. J Cataract Refract Surg; 2008 Jan; 34(1):132-6. PubMed ID: 18165093 [Abstract] [Full Text] [Related]
10. Comparative study of central corneal thickness using Fourier-domain optical coherence tomography versus ultrasound pachymetry in primary open-angle glaucoma. Garcia-Medina JJ, Garcia-Medina M, Garcia-Maturana C, Zanon-Moreno V, Pons-Vazquez S, Pinazo-Duran MD. Cornea; 2013 Jan; 32(1):9-13. PubMed ID: 22495027 [Abstract] [Full Text] [Related]
11. Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Costa-Cunha LV, Cunha LP, Malta RF, Monteiro ML. Am J Ophthalmol; 2009 Jan; 147(1):56-63.e2. PubMed ID: 18774548 [Abstract] [Full Text] [Related]
12. Repeatability and reproducibility of pachymetric mapping with Visante anterior segment-optical coherence tomography. Mohamed S, Lee GK, Rao SK, Wong AL, Cheng AC, Li EY, Chi SC, Lam DS. Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5499-504. PubMed ID: 18055798 [Abstract] [Full Text] [Related]
13. A Comparison between Scheimpflug imaging and optical coherence tomography in measuring corneal thickness. Huang J, Ding X, Savini G, Pan C, Feng Y, Cheng D, Hua Y, Hu X, Wang Q. Ophthalmology; 2013 Oct; 120(10):1951-8. PubMed ID: 23672973 [Abstract] [Full Text] [Related]
14. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Sin S, Simpson TL. Optom Vis Sci; 2006 Jun; 83(6):360-5. PubMed ID: 16772894 [Abstract] [Full Text] [Related]
15. Comparison of central corneal thickness using optical low-coherence reflectometry and spectral-domain optical coherence tomography. López-Miguel A, Correa-Pérez ME, Miranda-Anta S, Iglesias-Cortiñas D, Coco-Martín MB, Maldonado MJ. J Cataract Refract Surg; 2012 May; 38(5):758-64. PubMed ID: 22436868 [Abstract] [Full Text] [Related]
16. Reliability and reproducibility of assessment of corneal epithelial thickness by fourier domain optical coherence tomography. Prakash G, Agarwal A, Mazhari AI, Chari M, Kumar DA, Kumar G, Singh B. Invest Ophthalmol Vis Sci; 2012 May 04; 53(6):2580-5. PubMed ID: 22427573 [Abstract] [Full Text] [Related]
17. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography. Wylegała E, Teper S, Nowińska AK, Milka M, Dobrowolski D. J Cataract Refract Surg; 2009 Aug 04; 35(8):1410-4. PubMed ID: 19631129 [Abstract] [Full Text] [Related]
18. Anterior ocular biometry using 3-dimensional optical coherence tomography. Fukuda S, Kawana K, Yasuno Y, Oshika T. Ophthalmology; 2009 May 04; 116(5):882-9. PubMed ID: 19410946 [Abstract] [Full Text] [Related]
19. High-speed optical coherence tomography of corneal opacities. Khurana RN, Li Y, Tang M, Lai MM, Huang D. Ophthalmology; 2007 Jul 04; 114(7):1278-85. PubMed ID: 17307254 [Abstract] [Full Text] [Related]
20. Central corneal thickness measurements with Fourier-domain optical coherence tomography versus ultrasonic pachymetry and rotating Scheimpflug camera. Ishibazawa A, Igarashi S, Hanada K, Nagaoka T, Ishiko S, Ito H, Yoshida A. Cornea; 2011 Jun 04; 30(6):615-9. PubMed ID: 21282999 [Abstract] [Full Text] [Related] Page: [Next] [New Search]