These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
2163 related items for PubMed ID: 19443007
1. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Tong J, Chen Y. Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007 [Abstract] [Full Text] [Related]
4. Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Jiang Y, Chen Y, Zheng X. Environ Sci Technol; 2009 Oct 15; 43(20):7734-41. PubMed ID: 19921887 [Abstract] [Full Text] [Related]
5. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry. González C, García PA, Muñoz R. Water Sci Technol; 2009 Oct 15; 60(8):2145-52. PubMed ID: 19844061 [Abstract] [Full Text] [Related]
10. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation. Ji Z, Chen G, Chen Y. Bioresour Technol; 2010 May 15; 101(10):3457-62. PubMed ID: 20096564 [Abstract] [Full Text] [Related]
11. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Yilmaz G, Lemaire R, Keller J, Yuan Z. Biotechnol Bioeng; 2008 Jun 15; 100(3):529-41. PubMed ID: 18098318 [Abstract] [Full Text] [Related]
12. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification. Kim TH, Nam YK, Park C, Lee M. Bioresour Technol; 2009 Dec 15; 100(23):5694-9. PubMed ID: 19596570 [Abstract] [Full Text] [Related]
13. BICT biological process for nitrogen and phosphorus removal. Huang Y, Li Y, Pan Y. Water Sci Technol; 2004 Dec 15; 50(6):179-88. PubMed ID: 15537006 [Abstract] [Full Text] [Related]
14. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH. Zhang P, Chen Y, Zhou Q. Water Res; 2009 Aug 15; 43(15):3735-42. PubMed ID: 19555988 [Abstract] [Full Text] [Related]
15. Using excess sludge as carbon source for enhanced nitrogen removal and sludge reduction with hydrolysis technology. Gao YQ, Peng YZ, Zhang JY, Wang JL, Ye L. Water Sci Technol; 2010 Aug 15; 62(7):1536-43. PubMed ID: 20935370 [Abstract] [Full Text] [Related]
16. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. Wang F, Lu S, Wei Y, Ji M. J Hazard Mater; 2009 May 30; 164(2-3):1223-7. PubMed ID: 18980806 [Abstract] [Full Text] [Related]
19. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge. Chen Y, Zheng X, Feng L, Yang H. Water Sci Technol; 2013 May 30; 68(4):916-22. PubMed ID: 23985524 [Abstract] [Full Text] [Related]
20. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Gao Y, Peng Y, Zhang J, Wang S, Guo J, Ye L. Bioresour Technol; 2011 Mar 30; 102(5):4091-7. PubMed ID: 21232933 [Abstract] [Full Text] [Related] Page: [Next] [New Search]