These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


401 related items for PubMed ID: 19449878

  • 1. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting.
    Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y.
    Nano Lett; 2009 Jun; 9(6):2331-6. PubMed ID: 19449878
    [Abstract] [Full Text] [Related]

  • 2. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.
    Nano Lett; 2011 Jul 13; 11(7):3026-33. PubMed ID: 21710974
    [Abstract] [Full Text] [Related]

  • 3. ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting.
    Zhong M, Li Y, Yamada I, Delaunay JJ.
    Nanoscale; 2012 Mar 07; 4(5):1509-14. PubMed ID: 22200054
    [Abstract] [Full Text] [Related]

  • 4. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.
    Wang G, Xiao X, Li W, Lin Z, Zhao Z, Chen C, Wang C, Li Y, Huang X, Miao L, Jiang C, Huang Y, Duan X.
    Nano Lett; 2015 Jul 08; 15(7):4692-8. PubMed ID: 26052643
    [Abstract] [Full Text] [Related]

  • 5. Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications.
    Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y.
    Nanoscale; 2013 Aug 21; 5(16):7552-7. PubMed ID: 23836052
    [Abstract] [Full Text] [Related]

  • 6. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.
    Chen H, Wei Z, Yan K, Bai Y, Zhu Z, Zhang T, Yang S.
    Small; 2014 Nov 21; 10(22):4760-9. PubMed ID: 24990800
    [Abstract] [Full Text] [Related]

  • 7. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ.
    Small; 2009 Jan 21; 5(1):104-11. PubMed ID: 19040214
    [Abstract] [Full Text] [Related]

  • 8. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG, Hsu YK, Chen YC, Lee BW, Hwang JS, Chen LC, Chen KH.
    ChemSusChem; 2014 Sep 21; 7(9):2748-54. PubMed ID: 25044962
    [Abstract] [Full Text] [Related]

  • 9. Urchin-like nanowire array: a strategy for high-performance ZnO-based electrode utilized in photoelectrochemistry.
    Hieu HN, Dung NQ, Kim J, Kim D.
    Nanoscale; 2013 Jun 21; 5(12):5530-8. PubMed ID: 23673442
    [Abstract] [Full Text] [Related]

  • 10. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting.
    Qiu Y, Yan K, Deng H, Yang S.
    Nano Lett; 2012 Jan 11; 12(1):407-13. PubMed ID: 22149105
    [Abstract] [Full Text] [Related]

  • 11. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation.
    Wang G, Yang X, Qian F, Zhang JZ, Li Y.
    Nano Lett; 2010 Mar 10; 10(3):1088-92. PubMed ID: 20148567
    [Abstract] [Full Text] [Related]

  • 12. ZnO nanorod arrays for photoelectrochemical cells.
    Yu Q, Cao C.
    J Nanosci Nanotechnol; 2012 May 10; 12(5):3984-9. PubMed ID: 22852337
    [Abstract] [Full Text] [Related]

  • 13. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y.
    Nano Lett; 2011 May 11; 11(5):2119-25. PubMed ID: 21476581
    [Abstract] [Full Text] [Related]

  • 14. Improving photoelectrochemical response of ZnO nanowire arrays by coating with p-type ZnO-resembling metal-organic framework.
    Gao Q, Kang H, Cai Y, Xue D, Yu F, Fang J, Yang Y.
    Dalton Trans; 2019 Jun 25; 48(25):9310-9316. PubMed ID: 31166332
    [Abstract] [Full Text] [Related]

  • 15. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J, Yang HB, Khoo SY, Liu B.
    Nanoscale; 2013 Nov 21; 5(22):11118-24. PubMed ID: 24077389
    [Abstract] [Full Text] [Related]

  • 16. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P, Gao PX, Goberman DG, Ding Y.
    Nanotechnology; 2009 Mar 25; 20(12):125608. PubMed ID: 19420477
    [Abstract] [Full Text] [Related]

  • 17. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.
    Hsu YK, Chen YC, Lin YG.
    ACS Appl Mater Interfaces; 2015 Jul 01; 7(25):14157-62. PubMed ID: 26053274
    [Abstract] [Full Text] [Related]

  • 18. Earth-abundant oxygen evolution catalysts coupled onto ZnO nanowire arrays for efficient photoelectrochemical water cleavage.
    Jiang C, Moniz SJ, Khraisheh M, Tang J.
    Chemistry; 2014 Sep 26; 20(40):12954-61. PubMed ID: 25156820
    [Abstract] [Full Text] [Related]

  • 19. Fe2 PO5 -Encapsulated Reverse Energetic ZnO/Fe2 O3 Heterojunction Nanowire for Enhanced Photoelectrochemical Oxidation of Water.
    Qin DD, He CH, Li Y, Trammel AC, Gu J, Chen J, Yan Y, Shan DL, Wang QH, Quan JJ, Tao CL, Lu XQ.
    ChemSusChem; 2017 Jul 10; 10(13):2796-2804. PubMed ID: 28570775
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.