These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 19452424

  • 1. Role of growth factors in diabetic kidney disease.
    Chiarelli F, Gaspari S, Marcovecchio ML.
    Horm Metab Res; 2009 Aug; 41(8):585-93. PubMed ID: 19452424
    [Abstract] [Full Text] [Related]

  • 2. Diabetic nephropathy: where hemodynamics meets metabolism.
    Forbes JM, Fukami K, Cooper ME.
    Exp Clin Endocrinol Diabetes; 2007 Feb; 115(2):69-84. PubMed ID: 17318765
    [Abstract] [Full Text] [Related]

  • 3. Therapeutic potential of angiostatin in diabetic nephropathy.
    Zhang SX, Wang JJ, Lu K, Mott R, Longeras R, Ma JX.
    J Am Soc Nephrol; 2006 Feb; 17(2):475-86. PubMed ID: 16394111
    [Abstract] [Full Text] [Related]

  • 4. Microvascular basement membranes in diabetes mellitus.
    Tsilibary EC.
    J Pathol; 2003 Jul; 200(4):537-46. PubMed ID: 12845621
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy.
    Sharma K, Ziyadeh FN.
    Semin Nephrol; 1997 Mar; 17(2):80-92. PubMed ID: 9148380
    [Abstract] [Full Text] [Related]

  • 7. The involvement of advanced glycation endproducts (AGEs) in renal injury of diabetic glomerulosclerosis: association with phenotypic change in renal cells and infiltration of immune cells.
    Mao Y, Ootaka T, Saito T, Sato H, Sato T, Ito S.
    Clin Exp Nephrol; 2003 Sep; 7(3):201-9. PubMed ID: 14586716
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.
    Elmarakby AA, Sullivan JC.
    Cardiovasc Ther; 2012 Feb; 30(1):49-59. PubMed ID: 20718759
    [Abstract] [Full Text] [Related]

  • 16. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology.
    Wolf G.
    Eur J Clin Invest; 2004 Dec; 34(12):785-96. PubMed ID: 15606719
    [Abstract] [Full Text] [Related]

  • 17. [Recent progress in understanding the molecular pathogenesis of diabetic nephropathy].
    Abe H.
    Rinsho Byori; 2011 Feb; 59(2):179-86. PubMed ID: 21476304
    [Abstract] [Full Text] [Related]

  • 18. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-beta1 enhanced IL-18 expression in human renal proximal tubular epithelial cells.
    Miyauchi K, Takiyama Y, Honjyo J, Tateno M, Haneda M.
    Diabetes Res Clin Pract; 2009 Feb; 83(2):190-9. PubMed ID: 19110334
    [Abstract] [Full Text] [Related]

  • 19. Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease.
    Flyvbjerg A.
    Diabetologia; 2000 Oct; 43(10):1205-23. PubMed ID: 11079738
    [Abstract] [Full Text] [Related]

  • 20. The use of transgenic animals in the study of diabetic kidney disease.
    Wogensen L, Krag S, Chai Q, Ledet T.
    Horm Metab Res; 2005 Apr; 37 Suppl 1():17-25. PubMed ID: 15918106
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.