These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
517 related items for PubMed ID: 19453499
1. The leaf anatomy of a broad-leaved evergreen allows an increase in leaf nitrogen content in winter. Muller O, Oguchi R, Hirose T, Werger MJ, Hikosaka K. Physiol Plant; 2009 Jul; 136(3):299-309. PubMed ID: 19453499 [Abstract] [Full Text] [Related]
2. Photosynthesis and resource distribution through plant canopies. Niinemets U. Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747 [Abstract] [Full Text] [Related]
3. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S. J Exp Bot; 2006 Sep; 57(2):343-54. PubMed ID: 16356943 [Abstract] [Full Text] [Related]
4. Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy. Montpied P, Granier A, Dreyer E. J Exp Bot; 2009 Sep; 60(8):2407-18. PubMed ID: 19457983 [Abstract] [Full Text] [Related]
5. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis. Yoshimura K. Plant Cell Environ; 2010 May; 33(5):750-8. PubMed ID: 20519020 [Abstract] [Full Text] [Related]
6. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Diaz-Espejo A, Nicolás E, Fernández JE. Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820 [Abstract] [Full Text] [Related]
7. The rate-limiting step for CO(2) assimilation at different temperatures is influenced by the leaf nitrogen content in several C(3) crop species. Yamori W, Nagai T, Makino A. Plant Cell Environ; 2011 May; 34(5):764-77. PubMed ID: 21241332 [Abstract] [Full Text] [Related]
8. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R. Plant Cell Physiol; 2009 Apr; 50(4):684-97. PubMed ID: 19246458 [Abstract] [Full Text] [Related]
9. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Niinemets U, Wright IJ, Evans JR. J Exp Bot; 2009 Apr; 60(8):2433-49. PubMed ID: 19255061 [Abstract] [Full Text] [Related]
10. Seasonal changes in temperature response of photosynthesis and its contribution to annual carbon gain in Daphniphyllum humile, an evergreen understorey shrub. Katahata SI, Han Q, Naramoto M, Kakubari Y, Mukai Y. Plant Biol (Stuttg); 2014 Mar; 16(2):345-53. PubMed ID: 23731172 [Abstract] [Full Text] [Related]
11. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Li Y, Gao Y, Xu X, Shen Q, Guo S. J Exp Bot; 2009 Mar; 60(8):2351-60. PubMed ID: 19395387 [Abstract] [Full Text] [Related]
12. Patterns of spatio-temporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses. Silva-Cancino MC, Esteban R, Artetxe U, Plazaola JI. Physiol Plant; 2012 Mar; 144(3):289-301. PubMed ID: 22150512 [Abstract] [Full Text] [Related]
13. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Ethier GJ, Livingston NJ, Harrison DL, Black TA, Moran JA. Plant Cell Environ; 2006 Dec; 29(12):2168-84. PubMed ID: 17081250 [Abstract] [Full Text] [Related]
14. Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irradiance. Trouwborst G, Hogewoning SW, Harbinson J, van Ieperen W. Physiol Plant; 2011 Jun; 142(2):157-69. PubMed ID: 21320128 [Abstract] [Full Text] [Related]
15. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. Xu CY, Salih A, Ghannoum O, Tissue DT. J Exp Bot; 2012 Oct; 63(16):5829-41. PubMed ID: 22915750 [Abstract] [Full Text] [Related]
16. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Niinemets U, Cescatti A, Rodeghiero M, Tosens T. Plant Cell Environ; 2006 Jun; 29(6):1159-78. PubMed ID: 17080941 [Abstract] [Full Text] [Related]
17. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis. Wentworth M, Murchie EH, Gray JE, Villegas D, Pastenes C, Pinto M, Horton P. J Exp Bot; 2006 Jun; 57(3):699-709. PubMed ID: 16415331 [Abstract] [Full Text] [Related]
18. Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Ribas A, Peñuelas J, Elvira S, Gimeno BS. Environ Pollut; 2005 Mar; 134(2):291-300. PubMed ID: 15589656 [Abstract] [Full Text] [Related]
19. Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Zaragoza-Castells J, Sánchez-Gómez D, Valladares F, Hurry V, Atkin OK. Plant Cell Environ; 2007 Jul; 30(7):820-33. PubMed ID: 17547654 [Abstract] [Full Text] [Related]
20. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Sage TL, Sage RF. Plant Cell Physiol; 2009 Apr; 50(4):756-72. PubMed ID: 19246459 [Abstract] [Full Text] [Related] Page: [Next] [New Search]