These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1300 related items for PubMed ID: 19453943

  • 21. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways.
    Codina M, García de la serrana D, Sánchez-Gurmaches J, Montserrat N, Chistyakova O, Navarro I, Gutiérrez J.
    Gen Comp Endocrinol; 2008 Jun; 157(2):116-24. PubMed ID: 18504044
    [Abstract] [Full Text] [Related]

  • 22. Insulin and IGF-1 enhance the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway.
    Chenal J, Pierre K, Pellerin L.
    Eur J Neurosci; 2008 Jan; 27(1):53-65. PubMed ID: 18093179
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons.
    Chen TJ, Wang DC, Chen SS.
    J Neurosci Res; 2009 Aug 01; 87(10):2297-307. PubMed ID: 19301428
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Leucine stimulates procollagen alpha1(I) translation on hepatic stellate cells through ERK and PI3K/Akt/mTOR activation.
    Pérez de Obanos MP, López Zabalza MJ, Prieto J, Herraiz MT, Iraburu MJ.
    J Cell Physiol; 2006 Nov 01; 209(2):580-6. PubMed ID: 16897753
    [Abstract] [Full Text] [Related]

  • 27. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways.
    Liu L, Li F, Cardelli JA, Martin KA, Blenis J, Huang S.
    Oncogene; 2006 Nov 09; 25(53):7029-40. PubMed ID: 16715128
    [Abstract] [Full Text] [Related]

  • 28. Acetaldehyde promotes rapamycin-dependent activation of p70(S6K) and glucose uptake despite inhibition of Akt and mTOR in dopaminergic SH-SY5Y human neuroblastoma cells.
    Fang CX, Yang X, Sreejayan N, Ren J.
    Exp Neurol; 2007 Jan 09; 203(1):196-204. PubMed ID: 16962100
    [Abstract] [Full Text] [Related]

  • 29. Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin.
    Han J, Wang B, Xiao Z, Gao Y, Zhao Y, Zhang J, Chen B, Wang X, Dai J.
    Mol Cell Neurosci; 2008 Sep 09; 39(1):118-24. PubMed ID: 18620060
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Zinc chloride stimulates DNA synthesis of mouse embryonic stem cells: involvement of PI3K/Akt, MAPKs, and mTOR.
    Ryu JM, Lee MY, Yun SP, Han HJ.
    J Cell Physiol; 2009 Mar 09; 218(3):558-67. PubMed ID: 18988195
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. TNF-alpha increases protein content in C2C12 and primary myotubes by enhancing protein translation via the TNF-R1, PI3K, and MEK.
    Plaisance I, Morandi C, Murigande C, Brink M.
    Am J Physiol Endocrinol Metab; 2008 Feb 09; 294(2):E241-50. PubMed ID: 17971516
    [Abstract] [Full Text] [Related]

  • 34. Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum.
    Wlodarski P, Kasprzycka M, Liu X, Marzec M, Robertson ES, Slupianek A, Wasik MA.
    Cancer Res; 2005 Sep 01; 65(17):7800-8. PubMed ID: 16140948
    [Abstract] [Full Text] [Related]

  • 35. Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex.
    Sui L, Wang J, Li BM.
    Learn Mem; 2008 Oct 01; 15(10):762-76. PubMed ID: 18832563
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Elevated glucose activates protein synthesis in cultured cardiac myocytes.
    Yeshao W, Gu J, Peng X, Nairn AC, Nadler JL.
    Metabolism; 2005 Nov 01; 54(11):1453-60. PubMed ID: 16253633
    [Abstract] [Full Text] [Related]

  • 38. IGF-1 activates hEAG K(+) channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation.
    Borowiec AS, Hague F, Harir N, Guénin S, Guerineau F, Gouilleux F, Roudbaraki M, Lassoued K, Ouadid-Ahidouch H.
    J Cell Physiol; 2007 Sep 01; 212(3):690-701. PubMed ID: 17520698
    [Abstract] [Full Text] [Related]

  • 39. Methods for studying signal-dependent regulation of translation factor activity.
    Wang X, Proud CG.
    Methods Enzymol; 2007 Sep 01; 431():113-42. PubMed ID: 17923233
    [Abstract] [Full Text] [Related]

  • 40. High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-beta1 expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways.
    Ryu JM, Lee MY, Yun SP, Han HJ.
    J Cell Physiol; 2010 Jul 01; 224(1):59-70. PubMed ID: 20232305
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 65.