These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


76 related items for PubMed ID: 1945498

  • 1. Sorbitol inhibition of glucose metabolism by Streptococcus sanguis 160.
    Hamilton IR, Svensater G.
    Oral Microbiol Immunol; 1991 Jun; 6(3):151-9. PubMed ID: 1945498
    [Abstract] [Full Text] [Related]

  • 2. Sorbitol transport by Streptococcus sanguis 160.
    Svensater G, Hamilton IR.
    Oral Microbiol Immunol; 1991 Jun; 6(3):160-8. PubMed ID: 1945499
    [Abstract] [Full Text] [Related]

  • 3. Sorbitol transport and metabolism by oral streptococci.
    Svensäter G.
    Swed Dent J Suppl; 1991 Jun; 79():1-103. PubMed ID: 1896926
    [Abstract] [Full Text] [Related]

  • 4. Purification and properties of sorbitol-6-phosphate dehydrogenase from oral streptococci.
    Svensäter G, Edwardsson S, Kalfas S.
    Oral Microbiol Immunol; 1992 Jun; 7(3):148-54. PubMed ID: 1408350
    [Abstract] [Full Text] [Related]

  • 5. Control of sugar utilization in the oral bacteria Streptococcus salivarius and Streptococcus sanguis by the phosphoenolpyruvate: glucose phosphotransferase system.
    Vadeboncoeur C, Bourgeau G, Mayrand D, Trahan L.
    Arch Oral Biol; 1983 Jun; 28(2):123-31. PubMed ID: 6575744
    [Abstract] [Full Text] [Related]

  • 6. Phosphoenolpyruvate-dependent phosphorylation of alpha-methylglucoside in Streptococcus sanguis ATCC 10556.
    Vadeboncoeur C, Trahan L.
    Can J Microbiol; 1983 Jul; 29(7):833-6. PubMed ID: 6616345
    [Abstract] [Full Text] [Related]

  • 7. The repressible metabolism of sorbitol (D-glucitol) by intact cells of the oral plaque-forming bacterium Streptococcus mutans.
    Slee AM, Tanzer JM.
    Arch Oral Biol; 1983 Jul; 28(9):839-45. PubMed ID: 6579915
    [Abstract] [Full Text] [Related]

  • 8. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation.
    Keevil CW, Marsh PD, Ellwood DC.
    J Bacteriol; 1984 Feb; 157(2):560-7. PubMed ID: 6693352
    [Abstract] [Full Text] [Related]

  • 9. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T, Brochu D, Vadeboncoeur C, Hamilton IR.
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [Abstract] [Full Text] [Related]

  • 10. A comparative study of enzymes involved in glucose phosphorylation in oral streptococci.
    Vadeboncoeur C, Mayrand D, Trahan L.
    J Dent Res; 1982 Jan; 61(1):60-5. PubMed ID: 6948019
    [Abstract] [Full Text] [Related]

  • 11. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG, Boyd DA, Thevenot T, Hamilton IR.
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [Abstract] [Full Text] [Related]

  • 12. Phosphoenolpyruvate-dependent glucose phosphotransferase activity in Streptococcus mitis ATCC 903.
    Roberts KR, Linder L.
    Scand J Dent Res; 1980 Aug; 88(4):316-22. PubMed ID: 6934615
    [Abstract] [Full Text] [Related]

  • 13. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture.
    Vadeboncoeur C, Thibault L, Neron S, Halvorson H, Hamilton IR.
    J Bacteriol; 1987 Dec; 169(12):5686-91. PubMed ID: 3680174
    [Abstract] [Full Text] [Related]

  • 14. Concentration-dependent repression of the soluble and membrane components of the Streptococcus mutans phosphoenolpyruvate: sugar phosphotransferase system by glucose.
    Hamilton IR, Gauthier L, Desjardins B, Vadeboncoeur C.
    J Bacteriol; 1989 Jun; 171(6):2942-8. PubMed ID: 2722738
    [Abstract] [Full Text] [Related]

  • 15. Vesicles prepared from Streptococcus mutans demonstrate the presence of a second glucose transport system.
    Buckley ND, Hamilton IR.
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2639-48. PubMed ID: 8000534
    [Abstract] [Full Text] [Related]

  • 16. Environmental regulation of carbohydrate metabolism by Streptococcus sanguis NCTC 7865 grown in a chemostat.
    Marsh PD, McDermid AS, Keevil CW, Ellwood DC.
    J Gen Microbiol; 1985 Oct; 131(10):2505-14. PubMed ID: 2999295
    [Abstract] [Full Text] [Related]

  • 17. Inhibition by the antimicrobial agent chlorhexidine of acid production and sugar transport in oral streptococcal bacteria.
    Marsh PD, Keevil CW, McDermid AS, Williamson MI, Ellwood DC.
    Arch Oral Biol; 1983 Oct; 28(3):233-40. PubMed ID: 6574734
    [Abstract] [Full Text] [Related]

  • 18. Biochemical mechanisms of enhanced inhibition of fluoride on the anaerobic sugar metabolism by Streptococcus sanguis.
    Hata S, Iwami Y, Kamiyama K, Yamada T.
    J Dent Res; 1990 Jun; 69(6):1244-7. PubMed ID: 2355117
    [Abstract] [Full Text] [Related]

  • 19. Heterofermentative glucose metabolism by glucose transport-impaired mutants of oral streptococcal bacteria during growth in batch culture.
    Vadeboncoeur C, Trahan L.
    Arch Oral Biol; 1983 Jun; 28(10):931-7. PubMed ID: 6580849
    [Abstract] [Full Text] [Related]

  • 20. Interaction between xylitol and sorbitol in plaque metabolism.
    Frostell G.
    Swed Dent J; 1984 Jun; 8(3):137-46. PubMed ID: 6592772
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.