These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Lafage V, Gangnet N, Sénégas J, Lavaste F, Skalli W. Spine (Phila Pa 1976); 2007 Jul 15; 32(16):1706-13. PubMed ID: 17632390 [Abstract] [Full Text] [Related]
24. Biomechanics of a novel minimally invasive lumbar interspinous spacer: effects on kinematics, facet loads, and foramen height. Lazaro BC, Brasiliense LB, Sawa AG, Reyes PM, Theodore N, Sonntag VK, Crawford NR. Neurosurgery; 2010 Mar 15; 66(3 Suppl Operative):126-32; discussion 132-3. PubMed ID: 20173562 [Abstract] [Full Text] [Related]
25. Strength of the cervical spine in compression and bending. Przybyla AS, Skrzypiec D, Pollintine P, Dolan P, Adams MA. Spine (Phila Pa 1976); 2007 Jul 01; 32(15):1612-20. PubMed ID: 17621208 [Abstract] [Full Text] [Related]
26. Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion. Erkan S, Rivera Y, Wu C, Mehbod AA, Transfeldt EE. Spine J; 2009 Oct 01; 9(10):830-5. PubMed ID: 19477692 [Abstract] [Full Text] [Related]
27. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament. McAfee PC, Cunningham B, Dmitriev A, Hu N, Woo Kim S, Cappuccino A, Pimenta L. Spine (Phila Pa 1976); 2003 Oct 15; 28(20):S176-85. PubMed ID: 14560189 [Abstract] [Full Text] [Related]
29. [Comparative study of vertebral body stress distribution following insertion of artificial lumbar intervertebral disc]. Xu YC, Liu SL, Zhang MC, Huang DS, Wang QY. Zhonghua Wai Ke Za Zhi; 2004 Dec 22; 42(24):1485-8. PubMed ID: 15733478 [Abstract] [Full Text] [Related]
30. Biomechanical evaluation of a new total posterior-element replacement system. Wilke HJ, Schmidt H, Werner K, Schmölz W, Drumm J. Spine (Phila Pa 1976); 2006 Nov 15; 31(24):2790-6; discussion 2797. PubMed ID: 17108830 [Abstract] [Full Text] [Related]
32. Use of the finite element method to study the mechanism of spinal cord injury without radiological abnormality in the cervical spine. Imajo Y, Hiiragi I, Kato Y, Taguchi T. Spine (Phila Pa 1976); 2009 Jan 15; 34(2):E83-7. PubMed ID: 19139658 [Abstract] [Full Text] [Related]
33. The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation. Stieber JR, Quirno M, Kang M, Valdevit A, Errico TJ. J Spinal Disord Tech; 2011 Oct 15; 24(7):432-6. PubMed ID: 21336178 [Abstract] [Full Text] [Related]
34. Fill of the nucleus cavity affects mechanical stability in compression, bending, and torsion of a spine segment, which has undergone nucleus replacement. Arthur A, Cannella M, Keane M, Singhatat W, Vresilovic E, Marcolongo M. Spine (Phila Pa 1976); 2010 May 15; 35(11):1128-35. PubMed ID: 20473120 [Abstract] [Full Text] [Related]
39. Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system. Wilke HJ, Heuer F, Schmidt H. Spine (Phila Pa 1976); 2009 Feb 01; 34(3):255-61. PubMed ID: 19179920 [Abstract] [Full Text] [Related]
40. Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics: a probabilistic finite element study with subsequent sensitivity analysis. Rohlmann A, Nabil Boustani H, Bergmann G, Zander T. J Biomech; 2010 Nov 16; 43(15):2963-9. PubMed ID: 20696430 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]