These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
448 related items for PubMed ID: 19457485
1. Influence of optimization constraints in uneven parallel bar dismount swing simulations. Sheets AL, Hubbard M. J Biomech; 2009 Aug 07; 42(11):1685-91. PubMed ID: 19457485 [Abstract] [Full Text] [Related]
2. Evaluation of a subject-specific female gymnast model and simulation of an uneven parallel bar swing. Sheets AL, Hubbard M. J Biomech; 2008 Nov 14; 41(15):3139-44. PubMed ID: 18930233 [Abstract] [Full Text] [Related]
3. Role of arms in somersaulting from compliant surfaces: a simulation study of springboard standing dives. Cheng KB, Hubbard M. Hum Mov Sci; 2008 Feb 14; 27(1):80-95. PubMed ID: 17920146 [Abstract] [Full Text] [Related]
4. The mechanisms that enable arm motion to enhance vertical jump performance-a simulation study. Cheng KB, Wang CH, Chen HC, Wu CD, Chiu HT. J Biomech; 2008 Feb 14; 41(9):1847-54. PubMed ID: 18514208 [Abstract] [Full Text] [Related]
5. Optimisation of high bar circling technique for consistent performance of a triple piked somersault dismount. Hiley MJ, Yeadon MR. J Biomech; 2008 Feb 14; 41(8):1730-5. PubMed ID: 18402965 [Abstract] [Full Text] [Related]
6. Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps. Cheng KB, Hubbard M. J Biomech; 2005 Sep 14; 38(9):1822-9. PubMed ID: 16023469 [Abstract] [Full Text] [Related]
7. Effect of arm swing direction on forward and backward jump performance. Hara M, Shibayama A, Arakawa H, Fukashiro S. J Biomech; 2008 Sep 18; 41(13):2806-15. PubMed ID: 18752799 [Abstract] [Full Text] [Related]
8. A force and torque analysis of giant swings on the horizontal bar. Kopp PM, Reid JG. Can J Appl Sport Sci; 1980 Jun 18; 5(2):98-102. PubMed ID: 7389056 [Abstract] [Full Text] [Related]
9. Effect of hip flexibility on optimal stalder performances on high bar. Begon M, Hiley MJ, Yeadon MR. Comput Methods Biomech Biomed Engin; 2009 Oct 18; 12(5):575-83. PubMed ID: 19266351 [Abstract] [Full Text] [Related]
10. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters. Riemer R, Hsiao-Wecksler ET. J Biomech Eng; 2009 Jan 18; 131(1):011007. PubMed ID: 19045923 [Abstract] [Full Text] [Related]
11. The influence of simulation model complexity on the estimation of internal loading in gymnastics landings. Mills C, Pain MT, Yeadon MR. J Biomech; 2008 Jan 18; 41(3):620-8. PubMed ID: 18005975 [Abstract] [Full Text] [Related]
12. A force-torque analysis of the kip on the horizontal bar. Reid JG, Kopp PM. Can J Appl Sport Sci; 1983 Dec 18; 8(4):271-5. PubMed ID: 6652865 [Abstract] [Full Text] [Related]
13. Maximal dismounts from high bar. Hiley MJ, Yeadon MR. J Biomech; 2005 Nov 18; 38(11):2221-7. PubMed ID: 16154409 [Abstract] [Full Text] [Related]
18. Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints. Yeow CH, Lee PV, Goh JC. J Biomech; 2009 Aug 25; 42(12):1967-73. PubMed ID: 19501826 [Abstract] [Full Text] [Related]
19. Optimal control simulations reveal mechanisms by which arm movement improves standing long jump performance. Ashby BM, Delp SL. J Biomech; 2006 Aug 25; 39(9):1726-34. PubMed ID: 15992805 [Abstract] [Full Text] [Related]