These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


416 related items for PubMed ID: 19458152

  • 1. A motor cortical contribution to the anticipatory postural adjustments that precede reaching in the cat.
    Yakovenko S, Drew T.
    J Neurophysiol; 2009 Aug; 102(2):853-74. PubMed ID: 19458152
    [Abstract] [Full Text] [Related]

  • 2. Sequential activation of motor cortical neurons contributes to intralimb coordination during reaching in the cat by modulating muscle synergies.
    Yakovenko S, Krouchev N, Drew T.
    J Neurophysiol; 2011 Jan; 105(1):388-409. PubMed ID: 21068260
    [Abstract] [Full Text] [Related]

  • 3. Descending signals from the pontomedullary reticular formation are bilateral, asymmetric, and gated during reaching movements in the cat.
    Schepens B, Drew T.
    J Neurophysiol; 2006 Nov; 96(5):2229-52. PubMed ID: 16837662
    [Abstract] [Full Text] [Related]

  • 4. Independent and convergent signals from the pontomedullary reticular formation contribute to the control of posture and movement during reaching in the cat.
    Schepens B, Drew T.
    J Neurophysiol; 2004 Oct; 92(4):2217-38. PubMed ID: 15175364
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The pontomedullary reticular formation contributes to the compensatory postural responses observed following removal of the support surface in the standing cat.
    Stapley PJ, Drew T.
    J Neurophysiol; 2009 Mar; 101(3):1334-50. PubMed ID: 19118108
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Changes in posturo-kinetic limb responses to cortical stimulation following unilateral neck deafferentation in the cat.
    Gahéry Y, Pompeiano O, Coulmance M.
    Arch Ital Biol; 1984 Jun; 122(2):129-54. PubMed ID: 6477028
    [Abstract] [Full Text] [Related]

  • 14. Quantification of motor cortex activity and full-body biomechanics during unconstrained locomotion.
    Prilutsky BI, Sirota MG, Gregor RJ, Beloozerova IN.
    J Neurophysiol; 2005 Oct; 94(4):2959-69. PubMed ID: 15888524
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. [Synaptic processes in neurons of the cat pericruciate cortex evoked by pyramidal tract stimulation].
    Zadorozhnyĭ AG, Vasechko TV.
    Neirofiziologiia; 1975 Oct; 7(4):346-55. PubMed ID: 174014
    [Abstract] [Full Text] [Related]

  • 19. Corticoreticular pathways in the cat. II. Discharge activity of neurons in area 4 during voluntary gait modifications.
    Kably B, Drew T.
    J Neurophysiol; 1998 Jul; 80(1):406-24. PubMed ID: 9658060
    [Abstract] [Full Text] [Related]

  • 20. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory.
    Lajoie K, Andujar JE, Pearson K, Drew T.
    J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.