These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
342 related items for PubMed ID: 19458411
21. Transient shear stresses on a suspension cell in turbulence. Cherry RS, Kwon KY. Biotechnol Bioeng; 1990 Sep; 36(6):563-71. PubMed ID: 18595114 [Abstract] [Full Text] [Related]
28. An in vitro investigation of the influence of stenosis severity on the flow in the ascending aorta. Gülan U, Lüthi B, Holzner M, Liberzon A, Tsinober A, Kinzelbach W. Med Eng Phys; 2014 Sep; 36(9):1147-55. PubMed ID: 25066583 [Abstract] [Full Text] [Related]
29. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis. Tobin N, Manning KB. Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154 [Abstract] [Full Text] [Related]
31. A viscoelastic model of shear-induced hemolysis in laminar flow. Arwatz G, Smits AJ. Biorheology; 2013 Jun; 50(1-2):45-55. PubMed ID: 23619152 [Abstract] [Full Text] [Related]
33. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Sallam AM, Hwang NH. Biorheology; 1984 Jul; 21(6):783-97. PubMed ID: 6240286 [Abstract] [Full Text] [Related]
34. Spatio-temporal flow analysis in bileaflet heart valve hinge regions: potential analysis for blood element damage. Simon HA, Dasi LP, Leo HL, Yoganathan AP. Ann Biomed Eng; 2007 Aug; 35(8):1333-46. PubMed ID: 17431789 [Abstract] [Full Text] [Related]
35. Multiple equilibrium states in a micro-vascular network. Gardner D, Li Y, Small B, Geddes JB, Carr RT. Math Biosci; 2010 Oct; 227(2):117-24. PubMed ID: 20627109 [Abstract] [Full Text] [Related]
36. The deformation behavior of multiple red blood cells in a capillary vessel. Gong X, Sugiyama K, Takagi S, Matsumoto Y. J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140 [Abstract] [Full Text] [Related]
37. Kinetic theory based model for blood flow and its viscosity. Gidaspow D, Huang J. Ann Biomed Eng; 2009 Aug; 37(8):1534-45. PubMed ID: 19479375 [Abstract] [Full Text] [Related]
38. A mathematical model for the dissolution of non-occlusive blood clots in fast tangential blood flow. Sersa I, Tratar G, Mikac U, Blinc A. Biorheology; 2007 Aug; 44(1):1-16. PubMed ID: 17502685 [Abstract] [Full Text] [Related]
39. On the flow dependency of the electrical conductivity of blood. Hoetink AE, Faes TJ, Visser KR, Heethaar RM. IEEE Trans Biomed Eng; 2004 Jul; 51(7):1251-61. PubMed ID: 15248541 [Abstract] [Full Text] [Related]