These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


113 related items for PubMed ID: 1946321

  • 1. Alpha-helix folding by Monte Carlo simulated annealing in isolated C-peptide of ribonuclease A.
    Okamoto Y, Fukugita M, Nakazawa T, Kawai H.
    Protein Eng; 1991 Aug; 4(6):639-47. PubMed ID: 1946321
    [Abstract] [Full Text] [Related]

  • 2. A pH-dependent variation in alpha-helix structure of the S-peptide of ribonuclease A studied by Monte Carlo simulated annealing.
    Nakazawa T, Ban S, Okuda Y, Masuya M, Mitsutake A, Okamoto Y.
    Biopolymers; 2002 Apr 05; 63(4):273-9. PubMed ID: 11807754
    [Abstract] [Full Text] [Related]

  • 3. Beta-sheet folding of fragment (16-36) of bovine pancreatic trypsin inhibitor as predicted by Monte Carlo simulated annealing.
    Nakazawa T, Kawai H, Okamoto Y, Fukugita M.
    Protein Eng; 1992 Sep 05; 5(6):495-503. PubMed ID: 1279665
    [Abstract] [Full Text] [Related]

  • 4. Alpha-helix structure of parathyroid hormone fragment (1-34) predicted by Monte Carlo simulated annealing.
    Okamoto Y, Kikuchi T, Nakazawa T, Kawai H.
    Int J Pept Protein Res; 1993 Sep 05; 42(3):300-3. PubMed ID: 8225786
    [Abstract] [Full Text] [Related]

  • 5. Dependence on the dielectric model and pH in a synthetic helical peptide studied by Monte Carlo simulated annealing.
    Okamoto Y.
    Biopolymers; 1994 Apr 05; 34(4):529-39. PubMed ID: 8186363
    [Abstract] [Full Text] [Related]

  • 6. Interactions that favor the native over the non-native disulfide bond among residues 58-72 in the oxidative folding of bovine pancreatic ribonuclease A.
    Carty RP, Pincus MR, Scheraga HA.
    Biochemistry; 2002 Dec 17; 41(50):14815-9. PubMed ID: 12475229
    [Abstract] [Full Text] [Related]

  • 7. Conformation of the C-terminus of endothelin-1 in aqueous solution studied by Monte-Carlo simulation.
    Kuroda M, Yamazaki K, Taga T.
    FEBS Lett; 1994 Dec 05; 355(3):263-6. PubMed ID: 7988685
    [Abstract] [Full Text] [Related]

  • 8. Helix-forming tendencies of nonpolar amino acids predicted by Monte Carlo simulated annealing.
    Okamoto Y.
    Proteins; 1994 May 05; 19(1):14-23. PubMed ID: 8066082
    [Abstract] [Full Text] [Related]

  • 9. Determination of the conformation of folding initiation sites in proteins by computer simulation.
    Avbelj F, Moult J.
    Proteins; 1995 Oct 05; 23(2):129-41. PubMed ID: 8592695
    [Abstract] [Full Text] [Related]

  • 10. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling.
    Evans JS, Chan SI, Goddard WA.
    Protein Sci; 1995 Oct 05; 4(10):2019-31. PubMed ID: 8535238
    [Abstract] [Full Text] [Related]

  • 11. Monte Carlo studies of folding, dynamics, and stability in alpha-helices.
    Shental-Bechor D, Kirca S, Ben-Tal N, Haliloglu T.
    Biophys J; 2005 Apr 05; 88(4):2391-402. PubMed ID: 15653741
    [Abstract] [Full Text] [Related]

  • 12. Electrostatic effects on the alpha-helix and beta-strand formation of BPTI(16-36) studied by Monte Carlo simulated annealing.
    Nakazawa T, Okamoto Y.
    J Pept Res; 1999 Sep 05; 54(3):230-6. PubMed ID: 10517160
    [Abstract] [Full Text] [Related]

  • 13. Simulated annealing approach to the study of protein structures.
    Chou KC, Carlacci L.
    Protein Eng; 1991 Aug 05; 4(6):661-7. PubMed ID: 1946323
    [Abstract] [Full Text] [Related]

  • 14. Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways.
    Talluri S, Rothwarf DM, Scheraga HA.
    Biochemistry; 1994 Aug 30; 33(34):10437-49. PubMed ID: 8068682
    [Abstract] [Full Text] [Related]

  • 15. The loop problem in proteins: a Monte Carlo simulated annealing approach.
    Carlacci L, Englander SW.
    Biopolymers; 1993 Aug 30; 33(8):1271-86. PubMed ID: 7689864
    [Abstract] [Full Text] [Related]

  • 16. Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method.
    Kaźmierkiewicz R, Liwo A, Scheraga HA.
    J Comput Chem; 2002 May 30; 23(7):715-23. PubMed ID: 11948589
    [Abstract] [Full Text] [Related]

  • 17. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.
    Jesus CSH, Cruz PF, Arnaut LG, Brito RMM, Serpa C.
    J Phys Chem B; 2018 Apr 12; 122(14):3790-3800. PubMed ID: 29558133
    [Abstract] [Full Text] [Related]

  • 18. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.
    Iwaoka M, Suzuki T, Shoji Y, Dedachi K, Shimosato T, Minezaki T, Hojo H, Onuki H, Hirota H.
    J Comput Aided Mol Des; 2017 Dec 12; 31(12):1039-1052. PubMed ID: 29147837
    [Abstract] [Full Text] [Related]

  • 19. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics.
    Skolnick J, Kolinski A.
    J Mol Biol; 1991 Sep 20; 221(2):499-531. PubMed ID: 1920430
    [Abstract] [Full Text] [Related]

  • 20. Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved noradiative dynamic excitation energy transfer between site-specific extrinsic probes.
    Buckler DR, Haas E, Scheraga HA.
    Biochemistry; 1995 Dec 12; 34(49):15965-78. PubMed ID: 8519753
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.