These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
360 related items for PubMed ID: 19465862
1. Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Krämer NA, Krüger S, Schmitz S, Linssen M, Schade H, Weiss S, Spüntrup E, Günther RW, Bücker A, Krombach GA. Invest Radiol; 2009 Jul; 44(7):390-7. PubMed ID: 19465862 [Abstract] [Full Text] [Related]
2. Feasibility of real-time magnetic resonance-guided angioplasty and stenting of renal arteries in vitro and in Swine, using a new polyetheretherketone-based magnetic resonance-compatible guidewire. Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJ, Jacob AL, Bilecen D. Invest Radiol; 2009 Apr; 44(4):234-41. PubMed ID: 19252440 [Abstract] [Full Text] [Related]
3. Glass-Fiber-based MR-safe Guidewire for MR Imaging-guided Endovascular Interventions: In Vitro and Preclinical in Vivo Feasibility Study. Massmann A, Buecker A, Schneider GK. Radiology; 2017 Aug; 284(2):541-551. PubMed ID: 28301310 [Abstract] [Full Text] [Related]
5. MR-compatible polyetheretherketone-based guide wire assisting MR-guided stenting of iliac and supraaortic arteries in swine: feasibility study. Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJ, Jacob AL, Bilecen D. Minim Invasive Ther Allied Technol; 2009 Dec; 18(3):181-8. PubMed ID: 19431070 [Abstract] [Full Text] [Related]
6. First magnetic resonance imaging-guided aortic stenting and cava filter placement using a polyetheretherketone-based magnetic resonance imaging-compatible guidewire in swine: proof of concept. Kos S, Huegli R, Hofmann E, Quick HH, Kuehl H, Aker S, Kaiser GM, Borm PJ, Jacob AL, Bilecen D. Cardiovasc Intervent Radiol; 2009 May; 32(3):514-21. PubMed ID: 19115070 [Abstract] [Full Text] [Related]
7. A system for real-time XMR guided cardiovascular intervention. Rhode KS, Sermesant M, Brogan D, Hegde S, Hipwell J, Lambiase P, Rosenthal E, Bucknall C, Qureshi SA, Gill JS, Razavi R, Hill DL. IEEE Trans Med Imaging; 2005 Nov; 24(11):1428-40. PubMed ID: 16279080 [Abstract] [Full Text] [Related]
8. MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils. Bock M, Volz S, Zühlsdorff S, Umathum R, Fink C, Hallscheidt P, Semmler W. J Magn Reson Imaging; 2004 May; 19(5):580-9. PubMed ID: 15112307 [Abstract] [Full Text] [Related]
9. Initial in vivo studies with a polymer-based MR-compatible guide wire. Mekle R, Zenge MO, Ladd ME, Quick HH, Hofmann E, Scheffler K, Bilecen D. J Vasc Interv Radiol; 2009 Oct; 20(10):1384-9. PubMed ID: 19699660 [Abstract] [Full Text] [Related]
10. An MR guidewire based on micropultruded fiber-reinforced material. Krueger S, Schmitz S, Weiss S, Wirtz D, Linssen M, Schade H, Kraemer N, Spuentrup E, Krombach G, Buecker A. Magn Reson Med; 2008 Nov; 60(5):1190-6. PubMed ID: 18958856 [Abstract] [Full Text] [Related]
11. [Stent placement with real time MRI guidance: initial animal experiment experiences]. Bücker A, Neuerburg JM, Adam G, Schürmann K, Rasche V, van Vaals JJ, Molgaard-Nielsen A, Günther RW. Rofo; 1998 Dec; 169(6):655-7. PubMed ID: 9930222 [Abstract] [Full Text] [Related]
12. [MR-guided coil embolisation of renal arteries in an animal model]. Bücker A, Neuerburg JM, Adam G, Glowinski A, van Vaals JJ, Günther RW. Rofo; 2003 Feb; 175(2):271-4. PubMed ID: 12584630 [Abstract] [Full Text] [Related]
13. Real-time magnetic resonance-guided placement of retrievable inferior vena cava filters: comparison with fluoroscopic guidance with use of in vitro and animal models. Shih MC, Rogers WJ, Hagspiel KD. J Vasc Interv Radiol; 2006 Feb; 17(2 Pt 1):327-33. PubMed ID: 16517779 [Abstract] [Full Text] [Related]
14. Image-guided and -monitored renal artery stenting using only MRI. Elgort DR, Hillenbrand CM, Zhang S, Wong EY, Rafie S, Lewin JS, Duerk JL. J Magn Reson Imaging; 2006 May; 23(5):619-27. PubMed ID: 16555228 [Abstract] [Full Text] [Related]
15. Real-time magnetic resonance imaging-guided coronary catheterization in swine. Omary RA, Green JD, Schirf BE, Li Y, Finn JP, Li D. Circulation; 2003 Jun 03; 107(21):2656-9. PubMed ID: 12756160 [Abstract] [Full Text] [Related]
16. MR-guided core biopsy with MR fluoroscopy using a short, wide-bore 1.5-Tesla scanner: feasibility and initial results. Stattaus J, Maderwald S, Forsting M, Barkhausen J, Ladd ME. J Magn Reson Imaging; 2008 May 03; 27(5):1181-7. PubMed ID: 18425833 [Abstract] [Full Text] [Related]
17. [Tolerance of magnetic resonance imaging in children and adolescents performed in a 1.5 Tesla MR scanner with an open design]. Adamietz B, Cavallaro A, Radkow T, Alibek S, Holter W, Bautz WA, Staatz G. Rofo; 2007 Aug 03; 179(8):826-31. PubMed ID: 17577870 [Abstract] [Full Text] [Related]
18. Percutaneous MR imaging-guided transvascular access of mesenteric venous system: study in swine model. Arepally A, Karmarkar PV, Weiss C, Atalar E. Radiology; 2006 Jan 03; 238(1):113-8. PubMed ID: 16373762 [Abstract] [Full Text] [Related]
19. Magnetic resonance imaging-guided renal artery stent placement in a Swine model: comparison of two tracking techniques. Frericks BB, Elgort DR, Hillenbrand C, Duerk JL, Lewin JS, Wacker FK. Acta Radiol; 2009 Jan 03; 50(1):21-7. PubMed ID: 19101851 [Abstract] [Full Text] [Related]
20. Use of a combined MR imaging and interventional radiology suite for intraprocedural monitoring of uterine artery embolization. Vin AP, Rhee TK, Ryu RK, Larson AC, Nikolaidis P, Chrisman HB, Vogelzang RL, Omary RA. J Vasc Interv Radiol; 2007 Nov 03; 18(11):1362-7. PubMed ID: 18003985 [Abstract] [Full Text] [Related] Page: [Next] [New Search]