These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 19472339
1. Self-association of streptococcus pyogenes collagen-like constructs into higher order structures. Yoshizumi A, Yu Z, Silva T, Thiagarajan G, Ramshaw JA, Inouye M, Brodsky B. Protein Sci; 2009 Jun; 18(6):1241-51. PubMed ID: 19472339 [Abstract] [Full Text] [Related]
3. Noncollagenous region of the streptococcal collagen-like protein is a trimerization domain that supports refolding of adjacent homologous and heterologous collagenous domains. Yu Z, Mirochnitchenko O, Xu C, Yoshizumi A, Brodsky B, Inouye M. Protein Sci; 2010 Apr; 19(4):775-85. PubMed ID: 20162611 [Abstract] [Full Text] [Related]
4. Designed coiled coils promote folding of a recombinant bacterial collagen. Yoshizumi A, Fletcher JM, Yu Z, Persikov AV, Bartlett GJ, Boyle AL, Vincent TL, Woolfson DN, Brodsky B. J Biol Chem; 2011 May 20; 286(20):17512-20. PubMed ID: 21454493 [Abstract] [Full Text] [Related]
5. Dissecting a bacterial collagen domain from Streptococcus pyogenes: sequence and length-dependent variations in triple helix stability and folding. Yu Z, Brodsky B, Inouye M. J Biol Chem; 2011 May 27; 286(21):18960-8. PubMed ID: 21454494 [Abstract] [Full Text] [Related]
6. Preparation and characterization of monomers to tetramers of a collagen-like domain from Streptococcus pyogenes. Peng YY, Stoichevska V, Howell L, Madsen S, Werkmeister JA, Dumsday GJ, Ramshaw JA. Bioengineered; 2014 May 27; 5(6):378-85. PubMed ID: 25482084 [Abstract] [Full Text] [Related]
8. Surface-exposed loops and an acidic patch in the Scl1 protein of group A Streptococcus enable Scl1 binding to wound-associated fibronectin. McNitt DH, Choi SJ, Keene DR, Van De Water L, Squeglia F, Berisio R, Lukomski S. J Biol Chem; 2018 May 18; 293(20):7796-7810. PubMed ID: 29615492 [Abstract] [Full Text] [Related]
9. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix. Mizuno K, Hayashi T, Peyton DH, Bachinger HP. J Biol Chem; 2004 Jan 02; 279(1):282-7. PubMed ID: 14576161 [Abstract] [Full Text] [Related]
10. Self-association of collagen triple helic peptides into higher order structures. Kar K, Amin P, Bryan MA, Persikov AV, Mohs A, Wang YH, Brodsky B. J Biol Chem; 2006 Nov 03; 281(44):33283-90. PubMed ID: 16963782 [Abstract] [Full Text] [Related]
11. Hydroxylation-induced stabilization of the collagen triple helix. Acetyl-(glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)(10)-NH(2) forms a highly stable triple helix. Mizuno K, Hayashi T, Peyton DH, Bächinger HP. J Biol Chem; 2004 Sep 03; 279(36):38072-8. PubMed ID: 15231845 [Abstract] [Full Text] [Related]
12. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix. Schumacher MA, Mizuno K, Bächinger HP. J Biol Chem; 2006 Sep 15; 281(37):27566-74. PubMed ID: 16798737 [Abstract] [Full Text] [Related]
13. A Streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial. Peng YY, Yoshizumi A, Danon SJ, Glattauer V, Prokopenko O, Mirochnitchenko O, Yu Z, Inouye M, Werkmeister JA, Brodsky B, Ramshaw JA. Biomaterials; 2010 Apr 15; 31(10):2755-61. PubMed ID: 20056274 [Abstract] [Full Text] [Related]
14. Effect of the -Gly-3(S)-hydroxyprolyl-4(R)-hydroxyprolyl- tripeptide unit on the stability of collagen model peptides. Mizuno K, Peyton DH, Hayashi T, Engel J, Bächinger HP. FEBS J; 2008 Dec 15; 275(23):5830-40. PubMed ID: 19021759 [Abstract] [Full Text] [Related]
15. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix. Nishi Y, Uchiyama S, Doi M, Nishiuchi Y, Nakazawa T, Ohkubo T, Kobayashi Y. Biochemistry; 2005 Apr 26; 44(16):6034-42. PubMed ID: 15835892 [Abstract] [Full Text] [Related]
16. Expanding the family of collagen proteins: recombinant bacterial collagens of varying composition form triple-helices of similar stability. Xu C, Yu Z, Inouye M, Brodsky B, Mirochnitchenko O. Biomacromolecules; 2010 Feb 08; 11(2):348-56. PubMed ID: 20025291 [Abstract] [Full Text] [Related]
17. Incorporation of hydroxyproline in bacterial collagen from Streptococcus pyogenes. Peng YY, Nebl T, Glattauer V, Ramshaw JAM. Acta Biomater; 2018 Oct 15; 80():169-175. PubMed ID: 30218779 [Abstract] [Full Text] [Related]
18. Folding of collagen IV. Dölz R, Engel J, Kühn K. Eur J Biochem; 1988 Dec 15; 178(2):357-66. PubMed ID: 2850175 [Abstract] [Full Text] [Related]
19. The role of cystine knots in collagen folding and stability, part I. Conformational properties of (Pro-Hyp-Gly)5 and (Pro-(4S)-FPro-Gly)5 model trimers with an artificial cystine knot. Barth D, Musiol HJ, Schütt M, Fiori S, Milbradt AG, Renner C, Moroder L. Chemistry; 2003 Aug 04; 9(15):3692-702. PubMed ID: 12898696 [Abstract] [Full Text] [Related]
20. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position. Schumacher M, Mizuno K, Bächinger HP. J Biol Chem; 2005 May 27; 280(21):20397-403. PubMed ID: 15784619 [Abstract] [Full Text] [Related] Page: [Next] [New Search]