These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


654 related items for PubMed ID: 19473039

  • 21. Computer simulation to investigate the FRET application in DNA hybridization systems.
    Liao JM, Wang YT, Chen CL.
    Phys Chem Chem Phys; 2011 Jun 07; 13(21):10364-71. PubMed ID: 21537495
    [Abstract] [Full Text] [Related]

  • 22. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC, Nygren AO, O'Sullivan CK.
    Mol Biosyst; 2008 Sep 07; 4(9):950-4. PubMed ID: 18704233
    [Abstract] [Full Text] [Related]

  • 23. Bulk and single-molecule fluorescence studies of the saturation of the DNA double helix using YOYO-3 intercalator dye.
    Lopez SG, Ruedas-Rama MJ, Casares S, Alvarez-Pez JM, Orte A.
    J Phys Chem B; 2012 Sep 27; 116(38):11561-9. PubMed ID: 22947035
    [Abstract] [Full Text] [Related]

  • 24. Gauging the flexibility of fluorescent markers for the interpretation of fluorescence resonance energy transfer.
    Rindermann JJ, Akhtman Y, Richardson J, Brown T, Lagoudakis PG.
    J Am Chem Soc; 2011 Jan 19; 133(2):279-85. PubMed ID: 21155557
    [Abstract] [Full Text] [Related]

  • 25. Testing the use of molecular dynamics to simulate fluorophore motions and FRET.
    Deplazes E, Jayatilaka D, Corry B.
    Phys Chem Chem Phys; 2011 Jun 21; 13(23):11045-54. PubMed ID: 21556410
    [Abstract] [Full Text] [Related]

  • 26. Zinc porphyrin as a donor for FRET in Zn(II)cytochrome c.
    Lee AJ, Ensign AA, Krauss TD, Bren KL.
    J Am Chem Soc; 2010 Feb 17; 132(6):1752-3. PubMed ID: 20102193
    [Abstract] [Full Text] [Related]

  • 27. Engineering FRET constructs using CFP and YFP.
    Shimozono S, Miyawaki A.
    Methods Cell Biol; 2008 Feb 17; 85():381-93. PubMed ID: 18155471
    [Abstract] [Full Text] [Related]

  • 28. Strength in numbers: effects of acceptor abundance on FRET efficiency.
    Fábián ÁI, Rente T, Szöllosi J, Mátyus L, Jenei A.
    Chemphyschem; 2010 Dec 03; 11(17):3713-21. PubMed ID: 20936620
    [Abstract] [Full Text] [Related]

  • 29. Resonance energy transfer in DNA duplexes labeled with localized dyes.
    Cunningham PD, Khachatrian A, Buckhout-White S, Deschamps JR, Goldman ER, Medintz IL, Melinger JS.
    J Phys Chem B; 2014 Dec 18; 118(50):14555-65. PubMed ID: 25397906
    [Abstract] [Full Text] [Related]

  • 30. Advances in quantitative FRET-based methods for studying nucleic acids.
    Preus S, Wilhelmsson LM.
    Chembiochem; 2012 Sep 24; 13(14):1990-2001. PubMed ID: 22936620
    [Abstract] [Full Text] [Related]

  • 31. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations.
    Sapsford KE, Berti L, Medintz IL.
    Angew Chem Int Ed Engl; 2006 Jul 10; 45(28):4562-89. PubMed ID: 16819760
    [Abstract] [Full Text] [Related]

  • 32. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C, van Royen ME, Vermeulen W, Houtsmuller AB.
    J Microsc; 2008 Jul 10; 231(Pt 1):97-104. PubMed ID: 18638193
    [Abstract] [Full Text] [Related]

  • 33. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer.
    Badali D, Gradinaru CC.
    J Chem Phys; 2011 Jun 14; 134(22):225102. PubMed ID: 21682537
    [Abstract] [Full Text] [Related]

  • 34. Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Förster resonance energy transfer.
    Sabanayagam CR, Eid JS, Meller A.
    J Chem Phys; 2005 Dec 08; 123(22):224708. PubMed ID: 16375496
    [Abstract] [Full Text] [Related]

  • 35. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L, Lin W, Zheng K, Zhu S.
    Acc Chem Res; 2013 Jul 16; 46(7):1462-73. PubMed ID: 23419062
    [Abstract] [Full Text] [Related]

  • 36. Detection of FRET efficiency in imaging systems by photo-bleaching acceptors.
    Deng C, Li J, Ma W.
    Talanta; 2010 Jul 15; 82(2):771-4. PubMed ID: 20602968
    [Abstract] [Full Text] [Related]

  • 37. Photophysical characterization of a FRET system using tailor-made DNA oligonucleotide sequences.
    Flehr R, Kienzler A, Bannwarth W, Kumke MU.
    Bioconjug Chem; 2010 Dec 15; 21(12):2347-54. PubMed ID: 21114283
    [Abstract] [Full Text] [Related]

  • 38. General FRET-based coding for application in multiplexing methods.
    Giestas L, Petrov V, Baptista PV, Lima JC.
    Photochem Photobiol Sci; 2009 Aug 15; 8(8):1130-8. PubMed ID: 19639115
    [Abstract] [Full Text] [Related]

  • 39. CTAB enhancement of FRET in DNA structures.
    Oh T, Takahashi T, Kim S, Heller MJ.
    J Biophotonics; 2016 Jan 15; 9(1-2):49-54. PubMed ID: 26530400
    [Abstract] [Full Text] [Related]

  • 40. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M, Arai Y, Iwane AH, Ishii Y, Yanagida T.
    Biosystems; 2007 Apr 15; 88(3):243-50. PubMed ID: 17276585
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 33.