These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 19473930

  • 1. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J, Miller CA, Abbas PJ.
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [Abstract] [Full Text] [Related]

  • 2. Biophysical model of an auditory nerve fiber with a novel adaptation component.
    Woo J, Miller CA, Abbas PJ.
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2177-80. PubMed ID: 19497810
    [Abstract] [Full Text] [Related]

  • 3. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H.
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [Abstract] [Full Text] [Related]

  • 4. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y, Collins LM.
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [Abstract] [Full Text] [Related]

  • 5. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H, Rubinstein JT, Miller CA, Abbas PJ.
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [Abstract] [Full Text] [Related]

  • 6. Stochastic population model for electrical stimulation of the auditory nerve.
    Imennov NS, Rubinstein JT.
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2493-501. PubMed ID: 19304476
    [Abstract] [Full Text] [Related]

  • 7. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains.
    Zhang F, Miller CA, Robinson BK, Abbas PJ, Hu N.
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):356-72. PubMed ID: 17562109
    [Abstract] [Full Text] [Related]

  • 8. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.
    Xu Y, Collins LM.
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1389-98. PubMed ID: 17694859
    [Abstract] [Full Text] [Related]

  • 9. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
    Woo J, Miller CA, Abbas PJ.
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):283-96. PubMed ID: 20033248
    [Abstract] [Full Text] [Related]

  • 10. Effects of neural refractoriness on spatio-temporal variability in spike initiations with Electrical stimulation.
    Mino H, Rubinstein JT.
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):273-80. PubMed ID: 17009486
    [Abstract] [Full Text] [Related]

  • 11. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains.
    Runge-Samuelson CL, Abbas PJ, Rubinstein JT, Miller CA, Robinson BK.
    Hear Res; 2004 Aug; 194(1-2):1-13. PubMed ID: 15276671
    [Abstract] [Full Text] [Related]

  • 12. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.
    Miller CA, Hu N, Zhang F, Robinson BK, Abbas PJ.
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):122-37. PubMed ID: 18204987
    [Abstract] [Full Text] [Related]

  • 13. Prediction and control of neural responses to pulsatile electrical stimulation.
    Campbell LJ, Sly DJ, O'Leary SJ.
    J Neural Eng; 2012 Apr; 9(2):026023. PubMed ID: 22419164
    [Abstract] [Full Text] [Related]

  • 14. The effects of HCN and KLT ion channels on adaptation and refractoriness in a stochastic auditory nerve model.
    Negm MH, Bruce IC.
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2749-59. PubMed ID: 24893366
    [Abstract] [Full Text] [Related]

  • 15. Analysis and simulation of gain control and precision in crayfish visual interneurons.
    Glantz RM, Schroeter JP.
    J Neurophysiol; 2004 Nov; 92(5):2747-61. PubMed ID: 15240762
    [Abstract] [Full Text] [Related]

  • 16. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT.
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [Abstract] [Full Text] [Related]

  • 17. Effects of temporal properties on compound action potentials in response to amplitude-modulated electric pulse trains in guinea pigs.
    Jeng FC, Abbas PJ, Hu N, Miller CA, Nourski KV, Robinson BK.
    Hear Res; 2009 Jan; 247(1):47-59. PubMed ID: 19015019
    [Abstract] [Full Text] [Related]

  • 18. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation.
    Joshi SN, Dau T, Epp B.
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):323-342. PubMed ID: 28054149
    [Abstract] [Full Text] [Related]

  • 19. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H, Heil P.
    Brain Res; 2008 Jul 18; 1220():208-23. PubMed ID: 17936252
    [Abstract] [Full Text] [Related]

  • 20. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.
    Hu N, Miller CA, Abbas PJ, Robinson BK, Woo J.
    J Assoc Res Otolaryngol; 2010 Dec 18; 11(4):641-56. PubMed ID: 20632064
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.