These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


660 related items for PubMed ID: 19474168

  • 1. Role of ATP-dependent calcium regulation in modulation of Drosophila synaptic thermotolerance.
    Klose MK, Boulianne GL, Robertson RM, Atwood HL.
    J Neurophysiol; 2009 Aug; 102(2):901-13. PubMed ID: 19474168
    [Abstract] [Full Text] [Related]

  • 2. Different mechanisms of Ca2+ regulation that influence synaptic transmission: comparison between crayfish and Drosophila neuromuscular junctions.
    Desai-Shah M, Cooper RL.
    Synapse; 2009 Dec; 63(12):1100-21. PubMed ID: 19650116
    [Abstract] [Full Text] [Related]

  • 3. Hyperthermic preconditioning of presynaptic calcium regulation in Drosophila.
    Klose MK, Atwood HL, Robertson RM.
    J Neurophysiol; 2008 May; 99(5):2420-30. PubMed ID: 18272873
    [Abstract] [Full Text] [Related]

  • 4. Developmental consequences of neuromuscular junctions with reduced presynaptic calcium channel function.
    Xing B, Ashleigh Long A, Harrison DA, Cooper RL.
    Synapse; 2005 Sep 01; 57(3):132-47. PubMed ID: 15945059
    [Abstract] [Full Text] [Related]

  • 5. Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin.
    Vale C, Alfonso A, Suñol C, Vieytes MR, Botana LM.
    J Neurosci Res; 2006 Jun 01; 83(8):1393-406. PubMed ID: 16547972
    [Abstract] [Full Text] [Related]

  • 6. Nerve-evoked synchronous release and high K+ -induced quantal events are regulated separately by synaptotagmin I at Drosophila neuromuscular junctions.
    Tamura T, Hou J, Reist NE, Kidokoro Y.
    J Neurophysiol; 2007 Jan 01; 97(1):540-9. PubMed ID: 17079341
    [Abstract] [Full Text] [Related]

  • 7. Delayed synaptic transmission in Drosophila cacophonynull embryos.
    Hou J, Tamura T, Kidokoro Y.
    J Neurophysiol; 2008 Nov 01; 100(5):2833-42. PubMed ID: 18815348
    [Abstract] [Full Text] [Related]

  • 8. Role for calcium in heat shock-mediated synaptic thermoprotection in Drosophila larvae.
    Barclay JW, Robertson RM.
    J Neurobiol; 2003 Sep 15; 56(4):360-71. PubMed ID: 12918020
    [Abstract] [Full Text] [Related]

  • 9. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K, Lin Y, Imad M, Zhang J, Marin L, Horne JA, Meinertzhagen IA, Karunanithi S, Zinsmaier KE, Atwood HL.
    Synapse; 2007 Jan 15; 61(1):1-16. PubMed ID: 17068777
    [Abstract] [Full Text] [Related]

  • 10. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions.
    Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ.
    Neuron; 2005 Aug 04; 47(3):365-78. PubMed ID: 16055061
    [Abstract] [Full Text] [Related]

  • 11. Ca(2+)-dependent Ca(2+) clearance via mitochondrial uptake and plasmalemmal extrusion in frog motor nerve terminals.
    Suzuki S, Osanai M, Mitsumoto N, Akita T, Narita K, Kijima H, Kuba K.
    J Neurophysiol; 2002 Apr 04; 87(4):1816-23. PubMed ID: 11929903
    [Abstract] [Full Text] [Related]

  • 12. Exocytosis and endocytosis of synaptic vesicles and functional roles of vesicle pools: lessons from the Drosophila neuromuscular junction.
    Kuromi H, Kidokoro Y.
    Neuroscientist; 2005 Apr 04; 11(2):138-47. PubMed ID: 15746382
    [Abstract] [Full Text] [Related]

  • 13. Differences in Ca2+ regulation for high-output Is and low-output Ib motor terminals in Drosophila larvae.
    He T, Singh V, Rumpal N, Lnenicka GA.
    Neuroscience; 2009 Apr 10; 159(4):1283-91. PubMed ID: 19409207
    [Abstract] [Full Text] [Related]

  • 14. Regulation of intracellular ATP concentration under conditions of reduced ATP consumption in pancreatic islets.
    Tsuura Y, Fujimoto S, Kajikawa M, Ishida H, Seino Y.
    Biochem Biophys Res Commun; 1999 Aug 02; 261(2):439-44. PubMed ID: 10425203
    [Abstract] [Full Text] [Related]

  • 15. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat.
    Sasaki N, Dayanithi G, Shibuya I.
    Cell Calcium; 2005 Jan 02; 37(1):45-56. PubMed ID: 15541463
    [Abstract] [Full Text] [Related]

  • 16. Ouabain evokes exocytosis dependent on ryanodine and mitochondrial calcium stores that is not followed by compensatory endocytosis at the neuromuscular junction.
    Amaral E, Leite LF, Gomez MV, Prado MA, Guatimosim C.
    Neurochem Int; 2009 Nov 02; 55(6):406-13. PubMed ID: 19406178
    [Abstract] [Full Text] [Related]

  • 17. Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C.
    Yang F, He XP, Russell J, Lu B.
    J Cell Biol; 2003 Nov 10; 163(3):511-23. PubMed ID: 14610054
    [Abstract] [Full Text] [Related]

  • 18. Plasma membrane Ca(2+)-ATPase in the cilia of olfactory receptor neurons: possible role in Ca(2+) clearance.
    Castillo K, Delgado R, Bacigalupo J.
    Eur J Neurosci; 2007 Nov 10; 26(9):2524-31. PubMed ID: 17970729
    [Abstract] [Full Text] [Related]

  • 19. Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse.
    Castonguay A, Robitaille R.
    J Neurosci; 2001 Mar 15; 21(6):1911-22. PubMed ID: 11245676
    [Abstract] [Full Text] [Related]

  • 20. Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila.
    Wu Y, Kawasaki F, Ordway RW.
    J Neurophysiol; 2005 May 15; 93(5):2396-405. PubMed ID: 15845998
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.