These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


82 related items for PubMed ID: 19476318

  • 1. Monodisperse F-substituted hydroxyapatite single-crystal nanotubes with amphiphilic surface properties.
    Hui J, Xiang G, Xu X, Zhuang J, Wang X.
    Inorg Chem; 2009 Jul 06; 48(13):5614-6. PubMed ID: 19476318
    [Abstract] [Full Text] [Related]

  • 2. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS.
    Biomaterials; 2004 Aug 06; 25(19):4647-57. PubMed ID: 15120511
    [Abstract] [Full Text] [Related]

  • 3. Self-organization of hydroxyapatite nanorods through oriented attachment.
    Chen JD, Wang YJ, Wei K, Zhang SH, Shi XT.
    Biomaterials; 2007 May 06; 28(14):2275-80. PubMed ID: 17296220
    [Abstract] [Full Text] [Related]

  • 4. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials.
    Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG.
    Biomaterials; 2005 Sep 06; 26(26):5414-26. PubMed ID: 15814140
    [Abstract] [Full Text] [Related]

  • 5. Ultrastructural observation of single-crystal apatite fibres.
    Aizawa M, Porter AE, Best SM, Bonfield W.
    Biomaterials; 2005 Jun 06; 26(17):3427-33. PubMed ID: 15621231
    [Abstract] [Full Text] [Related]

  • 6. Shape-controlled synthesis of F-substituted hydroxyapatite microcrystals in the presence of Na2EDTA and citric acid.
    Jiang D, Li D, Xie J, Zhu J, Chen M, Lü X, Dang S.
    J Colloid Interface Sci; 2010 Oct 01; 350(1):30-8. PubMed ID: 20621302
    [Abstract] [Full Text] [Related]

  • 7. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity.
    Kim GM, Asran ASh, Michler GH, Simon P, Kim JS.
    Bioinspir Biomim; 2008 Dec 01; 3(4):046003. PubMed ID: 18812653
    [Abstract] [Full Text] [Related]

  • 8. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A, Rebelo AH, Lemos AF, Rocha JH, Ventura JM, Ferreira JM.
    Dent Mater; 2008 Oct 01; 24(10):1374-80. PubMed ID: 18417203
    [Abstract] [Full Text] [Related]

  • 9. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
    Oh SH, Finõnes RR, Daraio C, Chen LH, Jin S.
    Biomaterials; 2005 Aug 01; 26(24):4938-43. PubMed ID: 15769528
    [Abstract] [Full Text] [Related]

  • 10. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H, Tao J, Xu X, Tang R.
    Langmuir; 2007 Aug 14; 23(17):8972-81. PubMed ID: 17658861
    [Abstract] [Full Text] [Related]

  • 11. Aqueous microgels for the growth of hydroxyapatite nanocrystals.
    Schachschal S, Pich A, Adler HJ.
    Langmuir; 2008 May 06; 24(9):5129-34. PubMed ID: 18363417
    [Abstract] [Full Text] [Related]

  • 12. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L, Rodriguez J, Raez J, Myles AJ, Fenniri H, Webster TJ.
    Nanotechnology; 2009 Apr 29; 20(17):175101. PubMed ID: 19420581
    [Abstract] [Full Text] [Related]

  • 13. Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition.
    Manafi SA, Yazdani B, Rahimiopour MR, Sadrnezhaad SK, Amin MH, Razavi M.
    Biomed Mater; 2008 Jun 29; 3(2):025002. PubMed ID: 18458367
    [Abstract] [Full Text] [Related]

  • 14. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents.
    Zhang F, Zhao D.
    ACS Nano; 2009 Jan 27; 3(1):159-64. PubMed ID: 19206262
    [Abstract] [Full Text] [Related]

  • 15. Manipulation of partially oriented hydroxyapatite building blocks to form flowerlike bundles without acid-base regulation.
    Wen Z, Wang Z, Chen J, Zhong S, Hu Y, Wang J, Zhang Q.
    Colloids Surf B Biointerfaces; 2016 Jun 01; 142():74-80. PubMed ID: 26930036
    [Abstract] [Full Text] [Related]

  • 16. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K, Oda S, Fukusumi M, Morisada Y.
    Colloids Surf B Biointerfaces; 2009 Oct 01; 73(1):140-5. PubMed ID: 19515538
    [Abstract] [Full Text] [Related]

  • 17. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS, Katti DR, Dash R.
    Biomed Mater; 2008 Sep 01; 3(3):034122. PubMed ID: 18765898
    [Abstract] [Full Text] [Related]

  • 18. Synthesis and structure of cerium-substituted hydroxyapatite.
    Feng Z, Liao Y, Ye M.
    J Mater Sci Mater Med; 2005 May 01; 16(5):417-21. PubMed ID: 15875251
    [Abstract] [Full Text] [Related]

  • 19. Bioactivity in in situ hydroxyapatite-polycaprolactone composites.
    Verma D, Katti K, Katti D.
    J Biomed Mater Res A; 2006 Sep 15; 78(4):772-80. PubMed ID: 16739180
    [Abstract] [Full Text] [Related]

  • 20. One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: An inorganic-inorganic hybrid nanocomposite.
    Arumugam SK, Sastry TP, Sreedhar B, Mandal AB.
    J Biomed Mater Res A; 2007 Feb 15; 80(2):391-8. PubMed ID: 17001656
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.