These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
432 related items for PubMed ID: 19478407
1. Microdamage detection and repair in bone: fracture mechanics, histology, cell biology. Hazenberg JG, Hentunen TA, Heino TJ, Kurata K, Lee TC, Taylor D. Technol Health Care; 2009; 17(1):67-75. PubMed ID: 19478407 [Abstract] [Full Text] [Related]
3. Evidence for the role of osteocytes in the initiation of targeted remodeling. Heino TJ, Kurata K, Higaki H, Väänänen HK. Technol Health Care; 2009; 17(1):49-56. PubMed ID: 19478405 [Abstract] [Full Text] [Related]
5. The cellular transducer in bone: What is it? Taylor D, Hazenberg J, Lee TC. Technol Health Care; 2006; 14(4-5):367-77. PubMed ID: 17065758 [Abstract] [Full Text] [Related]
6. The behaviour of microcracks in compact bone. O'brien FJ, Hardiman DA, Hazenberg JG, Mercy MV, Mohsin S, Taylor D, Lee TC. Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026 [Abstract] [Full Text] [Related]
8. Stress intensity variations in bone microcracks during the repair process. Taylor D, Tilmans A. J Theor Biol; 2004 Jul 21; 229(2):169-77. PubMed ID: 15207472 [Abstract] [Full Text] [Related]
9. [Biochemical markers of bone turnover. New aspect. Changes in bone turnover markers during fracture healing]. Ichimura S, Hasegawa M. Clin Calcium; 2009 Aug 21; 19(8):1102-8. PubMed ID: 19638693 [Abstract] [Full Text] [Related]
10. A theoretical model for simulating effect of parathyroid hormone on bone metabolism at cellular level. Wang Y, Qin QH, Kalyanasundaram S. Mol Cell Biomech; 2009 Jun 21; 6(2):101-12. PubMed ID: 19496258 [Abstract] [Full Text] [Related]
11. A bone remodelling model coupling micro-damage growth and repair by 3D BMU-activity. García-Aznar JM, Rueberg T, Doblare M. Biomech Model Mechanobiol; 2005 Nov 21; 4(2-3):147-67. PubMed ID: 15942795 [Abstract] [Full Text] [Related]
12. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis. McNamara LM, Prendergast PJ. Eur J Morphol; 2005 Nov 21; 42(1-2):99-109. PubMed ID: 16123029 [Abstract] [Full Text] [Related]
13. Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Donahue SW, Galley SA. Crit Rev Biomed Eng; 2006 Nov 21; 34(3):215-71. PubMed ID: 16930125 [Abstract] [Full Text] [Related]
14. Microdamage and bone mechanobiology. Lee TC, O'Brien FJ, Gunnlaugsson T, Parkesh R, Taylor D. Technol Health Care; 2006 Nov 21; 14(4-5):359-65. PubMed ID: 17065757 [Abstract] [Full Text] [Related]
15. The role of mesenchymal stem cells in maintenance and repair of bone. Bielby R, Jones E, McGonagle D. Injury; 2007 Mar 21; 38 Suppl 1():S26-32. PubMed ID: 17383482 [Abstract] [Full Text] [Related]
18. RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells. Mulcahy LE, Taylor D, Lee TC, Duffy GP. Bone; 2011 Feb 21; 48(2):182-8. PubMed ID: 20854946 [Abstract] [Full Text] [Related]
19. On the role of bone damage in calcium homeostasis. Martínez-Reina J, García-Aznar JM, Domínguez J, Doblaré M. J Theor Biol; 2008 Oct 07; 254(3):704-12. PubMed ID: 18625247 [Abstract] [Full Text] [Related]
20. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. Martin RB, Stover SM, Gibson VA, Gibeling JC, Griffin LV. J Orthop Res; 1996 Sep 07; 14(5):794-801. PubMed ID: 8893774 [Abstract] [Full Text] [Related] Page: [Next] [New Search]