These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 19481447
1. Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulon sasakii. Morita H, Tsuchiya T, Kishibe K, Noya S, Shiro M, Hirasawa Y. Bioorg Med Chem Lett; 2009 Jul 01; 19(13):3679-81. PubMed ID: 19481447 [Abstract] [Full Text] [Related]
2. Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Seo C, Sohn JH, Ahn JS, Yim JH, Lee HK, Oh H. Bioorg Med Chem Lett; 2009 May 15; 19(10):2801-3. PubMed ID: 19362837 [Abstract] [Full Text] [Related]
3. Anti-Cancer Activity of Lobaric Acid and Lobarstin Extracted from the Antarctic Lichen Stereocaulon alpnum. Hong JM, Suh SS, Kim TK, Kim JE, Han SJ, Youn UJ, Yim JH, Kim IC. Molecules; 2018 Mar 14; 23(3):. PubMed ID: 29538328 [Abstract] [Full Text] [Related]
4. Effect of lobaric acid on cysteinyl-leukotriene formation and contractile activity of guinea pig taenia coli. Gissurarson SR, Sigurdsson SB, Wagner H, Ingolfsdottir K. J Pharmacol Exp Ther; 1997 Feb 14; 280(2):770-3. PubMed ID: 9023290 [Abstract] [Full Text] [Related]
5. Spectroscopic and photochemical properties of the lichen compound lobaric acid. Hidalgo ME, Bascuñan L, Quilhot W, Fernández E, Rubio C. Photochem Photobiol; 2005 Feb 14; 81(6):1447-9. PubMed ID: 16107188 [Abstract] [Full Text] [Related]
6. Lobaric acid and pseudodepsidones inhibit NF-κB signaling pathway by activation of PPAR-γ. Carpentier C, Barbeau X, Azelmat J, Vaillancourt K, Grenier D, Lagüe P, Voyer N. Bioorg Med Chem; 2018 Dec 01; 26(22):5845-5851. PubMed ID: 30420328 [Abstract] [Full Text] [Related]
7. A new depsidone and antibacterial activities of compounds from Usnea undulata Stirton. Sultana N, Afolayan AJ. J Asian Nat Prod Res; 2011 Dec 01; 13(12):1158-64. PubMed ID: 22115039 [Abstract] [Full Text] [Related]
8. Total Syntheses of Lobaric Acid and Its Derivatives from the Antarctic Lichen Stereocaulon alpinum. Kim TK, Kim JE, Youn UJ, Han SJ, Kim IC, Cho CG, Yim JH. J Nat Prod; 2018 Jun 22; 81(6):1460-1467. PubMed ID: 29878768 [Abstract] [Full Text] [Related]
9. Synthesis and biological evaluation of 2- and 3-aminobenzo[b]thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization. Romagnoli R, Baraldi PG, Carrion MD, Lopez Cara C, Preti D, Fruttarolo F, Pavani MG, Tabrizi MA, Tolomeo M, Grimaudo S, Di Cristina A, Balzarini J, Hadfield JA, Brancale A, Hamel E. J Med Chem; 2007 May 03; 50(9):2273-7. PubMed ID: 17419607 [Abstract] [Full Text] [Related]
10. Metabolites from the Lichen Ochrolechia parella growing under two different heliotropic conditions. Millot M, Tomasi S, Articus K, Rouaud I, Bernard A, Boustie J. J Nat Prod; 2007 Feb 03; 70(2):316-8. PubMed ID: 17256903 [Abstract] [Full Text] [Related]
11. Usimines A-C, bioactive usnic acid derivatives from the Antarctic lichen Stereocaulon alpinum. Seo C, Sohn JH, Park SM, Yim JH, Lee HK, Oh H. J Nat Prod; 2008 Apr 03; 71(4):710-2. PubMed ID: 18288807 [Abstract] [Full Text] [Related]
12. Oxadiazole derivatives as a novel class of antimitotic agents: Synthesis, inhibition of tubulin polymerization, and activity in tumor cell lines. Ouyang X, Piatnitski EL, Pattaropong V, Chen X, He HY, Kiselyov AS, Velankar A, Kawakami J, Labelle M, Smith L, Lohman J, Lee SP, Malikzay A, Fleming J, Gerlak J, Wang Y, Rosler RL, Zhou K, Mitelman S, Camara M, Surguladze D, Doody JF, Tuma MC. Bioorg Med Chem Lett; 2006 Mar 01; 16(5):1191-6. PubMed ID: 16377187 [Abstract] [Full Text] [Related]
13. Phenolic compounds with cell protective activity from the fruits of Livistona chinensis. Yuan T, Yang SP, Zhang HY, Liao SG, Wang W, Wu Y, Tang XC, Yue JM. J Asian Nat Prod Res; 2009 Mar 01; 11(3):243-9. PubMed ID: 19408148 [Abstract] [Full Text] [Related]
14. Benzopyridooxathiazepine derivatives as novel potent antimitotic agents. Gallet S, Flouquet N, Carato P, Pfeiffer B, Renard P, Léonce S, Pierré A, Berthelot P, Lebegue N. Bioorg Med Chem; 2009 Feb 01; 17(3):1132-8. PubMed ID: 19162484 [Abstract] [Full Text] [Related]
15. Synthesis and biological evaluation of 1-methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a new class of antimitotic agents and tubulin inhibitors. Romagnoli R, Baraldi PG, Sarkar T, Carrion MD, Cara CL, Cruz-Lopez O, Preti D, Tabrizi MA, Tolomeo M, Grimaudo S, Di Cristina A, Zonta N, Balzarini J, Brancale A, Hsieh HP, Hamel E. J Med Chem; 2008 Mar 13; 51(5):1464-8. PubMed ID: 18260616 [Abstract] [Full Text] [Related]
17. Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Bucar F, Schneider I, Ogmundsdóttir H, Ingólfsdóttir K. Phytomedicine; 2004 Nov 13; 11(7-8):602-6. PubMed ID: 15636173 [Abstract] [Full Text] [Related]
18. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Negi AS, Gautam Y, Alam S, Chanda D, Luqman S, Sarkar J, Khan F, Konwar R. Bioorg Med Chem; 2015 Feb 01; 23(3):373-89. PubMed ID: 25564377 [Abstract] [Full Text] [Related]
19. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Brancale A, Silvestri R. Med Res Rev; 2007 Mar 01; 27(2):209-38. PubMed ID: 16788980 [Abstract] [Full Text] [Related]
20. Privileged structure-based quinazolinone natural product-templated libraries: identification of novel tubulin polymerization inhibitors. Liu JF, Wilson CJ, Ye P, Sprague K, Sargent K, Si Y, Beletsky G, Yohannes D, Ng SC. Bioorg Med Chem Lett; 2006 Feb 01; 16(3):686-90. PubMed ID: 16257201 [Abstract] [Full Text] [Related] Page: [Next] [New Search]