These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 19488749

  • 1. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS, Zhou X, Ding MZ, Yuan YJ.
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [Abstract] [Full Text] [Related]

  • 2. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae.
    Cheng JS, Ding MZ, Tian HC, Yuan YJ.
    Proteomics; 2009 Oct; 9(20):4704-13. PubMed ID: 19743421
    [Abstract] [Full Text] [Related]

  • 3. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress.
    Kim I, Yun H, Jin I.
    J Microbiol Biotechnol; 2007 Feb; 17(2):207-17. PubMed ID: 18051751
    [Abstract] [Full Text] [Related]

  • 4. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.
    Ding MZ, Tian HC, Cheng JS, Yuan YJ.
    J Biotechnol; 2009 Dec; 144(4):279-86. PubMed ID: 19808067
    [Abstract] [Full Text] [Related]

  • 5. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation.
    Cheng JS, Qiao B, Yuan YJ.
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):327-38. PubMed ID: 18923828
    [Abstract] [Full Text] [Related]

  • 6. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK, Wright PC.
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [Abstract] [Full Text] [Related]

  • 7. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 8. Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae.
    Courchesne WE, Tunc M, Liao S.
    Can J Microbiol; 2009 Mar; 55(3):288-303. PubMed ID: 19370072
    [Abstract] [Full Text] [Related]

  • 9. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM, Tan Y, Yuan YJ.
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [Abstract] [Full Text] [Related]

  • 10. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.
    FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542
    [Abstract] [Full Text] [Related]

  • 11. Proteomic analysis reveals significant alternations of cardiac small heat shock protein expression in congestive heart failure.
    Dohke T, Wada A, Isono T, Fujii M, Yamamoto T, Tsutamoto T, Horie M.
    J Card Fail; 2006 Feb; 12(1):77-84. PubMed ID: 16500585
    [Abstract] [Full Text] [Related]

  • 12. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS, Moon HY, Yun HS, Jin I.
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [Abstract] [Full Text] [Related]

  • 13. Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae.
    Salusjärvi L, Poutanen M, Pitkänen JP, Koivistoinen H, Aristidou A, Kalkkinen N, Ruohonen L, Penttilä M.
    Yeast; 2003 Mar; 20(4):295-314. PubMed ID: 12627397
    [Abstract] [Full Text] [Related]

  • 14. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress.
    Kim IS, Yun HS, Park IS, Sohn HY, Iwahashi H, Jin IN.
    J Biosci Bioeng; 2006 Oct; 102(4):288-96. PubMed ID: 17116574
    [Abstract] [Full Text] [Related]

  • 15. A proteomic approach in analyzing heat-responsive proteins in rice leaves.
    Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH.
    Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143
    [Abstract] [Full Text] [Related]

  • 16. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY, Chang YJ, Chung YJ, Kim KS.
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [Abstract] [Full Text] [Related]

  • 17. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.
    Ahsan N, Donnart T, Nouri MZ, Komatsu S.
    J Proteome Res; 2010 Aug 06; 9(8):4189-204. PubMed ID: 20540562
    [Abstract] [Full Text] [Related]

  • 18. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J, Takagi H.
    Biotechnol Appl Biochem; 2009 May 29; 53(Pt 3):155-64. PubMed ID: 19476439
    [Abstract] [Full Text] [Related]

  • 19. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.
    Appl Microbiol Biotechnol; 2006 Jul 29; 71(3):339-49. PubMed ID: 16222531
    [Abstract] [Full Text] [Related]

  • 20. [Comparison of crude lysate pellets of isogenic strains of yeast with different prion composition: identification of a set of prion-associated proteins].
    Nevzgliadova OV, Artemov AV, Mittenberg AG, Kostyleva EI, Mikhaĭlova EV, Solov'ev KV, Kuznetsova IM, Turoverov KK, Soĭdla TR.
    Tsitologiia; 2010 Jul 29; 52(1):63-79. PubMed ID: 20302018
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.