These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
528 related items for PubMed ID: 19493425
1. An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice. Hu JZ, Zhang ZY, Zhao J, Zhang XL, Liu GT, Jiang XQ. Chin Med J (Engl); 2009 Apr 20; 122(8):972-9. PubMed ID: 19493425 [Abstract] [Full Text] [Related]
2. The ectopic study of tissue-engineered bone with hBMP-4 gene modified bone marrow stromal cells in rabbits. Jiang XQ, Chen JG, Gittens S, Chen CJ, Zhang XL, Zhang ZY. Chin Med J (Engl); 2005 Feb 20; 118(4):281-8. PubMed ID: 15740665 [Abstract] [Full Text] [Related]
6. Ectopic osteogenesis by ex vivo gene therapy using beta tricalcium phosphate as a carrier. Han D, Sun X, Zhang X, Tang T, Dai K. Connect Tissue Res; 2008 Feb 20; 49(5):343-50. PubMed ID: 18991087 [Abstract] [Full Text] [Related]
12. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G, Zhao L, Cui L, Liu W, Cao Y. Biomed Mater; 2007 Jun 20; 2(2):78-86. PubMed ID: 18458439 [Abstract] [Full Text] [Related]
13. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. Frank O, Heim M, Jakob M, Barbero A, Schäfer D, Bendik I, Dick W, Heberer M, Martin I. J Cell Biochem; 2002 Jun 20; 85(4):737-46. PubMed ID: 11968014 [Abstract] [Full Text] [Related]
14. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2. Uchida M, Agata H, Sagara H, Shinohara Y, Kagami H, Asahina I. J Biomed Mater Res A; 2009 Oct 20; 91(1):84-91. PubMed ID: 18767063 [Abstract] [Full Text] [Related]
15. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B, Wan YZ, Tang TT, Gao C, Dai KR. Tissue Eng Part A; 2009 May 20; 15(5):1091-8. PubMed ID: 19196148 [Abstract] [Full Text] [Related]
17. Characterization of growth and osteogenic differentiation of rabbit bone marrow stromal cells. Roostaeian J, Carlsen B, Simhaee D, Jarrahy R, Huang W, Ishida K, Rudkin GH, Yamaguchi DT, Miller TA. J Surg Res; 2006 Jun 15; 133(2):76-83. PubMed ID: 16360178 [Abstract] [Full Text] [Related]
18. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. Malaval L, Modrowski D, Gupta AK, Aubin JE. J Cell Physiol; 1994 Mar 15; 158(3):555-72. PubMed ID: 8126078 [Abstract] [Full Text] [Related]
19. The effect of type I collagen on osteochondrogenic differentiation in adipose-derived stromal cells in vivo. Alonso M, Claros S, Becerra J, Andrades JA. Cytotherapy; 2008 Mar 15; 10(6):597-610. PubMed ID: 18836915 [Abstract] [Full Text] [Related]
20. Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells. Patel M, Dunn TA, Tostanoski S, Fisher JP. J Tissue Eng Regen Med; 2010 Aug 15; 4(6):422-36. PubMed ID: 20047194 [Abstract] [Full Text] [Related] Page: [Next] [New Search]