These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 19493963
1. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto K, Barry NP, Levi M. Am J Physiol Renal Physiol; 2009 Aug; 297(2):F350-61. PubMed ID: 19493963 [Abstract] [Full Text] [Related]
2. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA. Pflugers Arch; 2008 Nov; 457(2):539-49. PubMed ID: 18535837 [Abstract] [Full Text] [Related]
4. Magnesium stimulates renal phosphate reabsorption. Thumfart J, Jung S, Amasheh S, Krämer S, Peters H, Sommer K, Biber J, Murer H, Meij I, Querfeld U, Wagner CA, Müller D. Am J Physiol Renal Physiol; 2008 Oct; 295(4):F1126-33. PubMed ID: 18701629 [Abstract] [Full Text] [Related]
5. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC. Am J Physiol Renal Physiol; 2009 Apr; 296(4):F691-9. PubMed ID: 19073637 [Abstract] [Full Text] [Related]
6. Does the composition of urinary extracellular vesicles reflect the abundance of renal Na+/phosphate transporters? Radvanyi Z, Daryadel A, Pastor-Arroyo EM, Hernando N, Wagner CA. Pflugers Arch; 2022 Nov; 474(11):1201-1212. PubMed ID: 36074191 [Abstract] [Full Text] [Related]
7. Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Béliveau R, Wilson P, Rogers T, Levi M. Kidney Int; 2001 Aug; 60(2):694-704. PubMed ID: 11473652 [Abstract] [Full Text] [Related]
8. The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Bourgeois S, Capuano P, Stange G, Mühlemann R, Murer H, Biber J, Wagner CA. Pflugers Arch; 2013 Nov; 465(11):1557-72. PubMed ID: 23708836 [Abstract] [Full Text] [Related]
9. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. Am J Physiol Renal Physiol; 2009 Aug; 297(2):F282-91. PubMed ID: 19515808 [Abstract] [Full Text] [Related]
10. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Villa-Bellosta R, Sorribas V. Toxicol Appl Pharmacol; 2008 Oct 01; 232(1):125-34. PubMed ID: 18586044 [Abstract] [Full Text] [Related]
11. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Ito M, Sakurai A, Hayashi K, Ohi A, Kangawa N, Nishiyama T, Sugino S, Uehata Y, Kamahara A, Sakata M, Tatsumi S, Kuwahata M, Taketani Y, Segawa H, Miyamoto K. Am J Physiol Renal Physiol; 2010 Jul 01; 299(1):F243-54. PubMed ID: 20410212 [Abstract] [Full Text] [Related]
12. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N. Pflugers Arch; 2010 Jun 01; 460(1):207-17. PubMed ID: 20354864 [Abstract] [Full Text] [Related]
14. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Wagner CA, Rubio-Aliaga I, Hernando N. Pediatr Nephrol; 2019 Apr 01; 34(4):549-559. PubMed ID: 29275531 [Abstract] [Full Text] [Related]
15. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Villa-Bellosta R, Sorribas V. Pflugers Arch; 2010 Feb 01; 459(3):499-508. PubMed ID: 19841935 [Abstract] [Full Text] [Related]
16. GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes. Reining SC, Gisler SM, Fuster D, Moe OW, O'Sullivan GA, Betz H, Biber J, Murer H, Hernando N. Am J Physiol Renal Physiol; 2009 May 01; 296(5):F1118-28. PubMed ID: 19225049 [Abstract] [Full Text] [Related]
17. The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake. Daryadel A, Küng CJ, Haykir B, Sabrautzki S, de Angelis MH, Hernando N, Rubio-Aliaga I, Wagner CA. Am J Physiol Renal Physiol; 2024 May 01; 326(5):F792-F801. PubMed ID: 38545651 [Abstract] [Full Text] [Related]
18. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem S, Barry N, Blaine J, Jiang T, Wang XX, Levi M. Am J Physiol Renal Physiol; 2009 Nov 01; 297(5):F1466-75. PubMed ID: 19675183 [Abstract] [Full Text] [Related]
19. Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Ambühl PM, Zajicek HK, Wang H, Puttaparthi K, Levi M. Kidney Int; 1998 May 01; 53(5):1288-98. PubMed ID: 9573544 [Abstract] [Full Text] [Related]
20. Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Bacic D, Capuano P, Baum M, Zhang J, Stange G, Biber J, Kaissling B, Moe OW, Wagner CA, Murer H. Am J Physiol Renal Physiol; 2005 Apr 01; 288(4):F740-7. PubMed ID: 15547113 [Abstract] [Full Text] [Related] Page: [Next] [New Search]