These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 19494139
1. Firing patterns in superior colliculus of head-unrestrained monkey during normal and perturbed gaze saccades reveal short-latency feedback and a sluggish rostral shift in activity. Choi WY, Guitton D. J Neurosci; 2009 Jun 03; 29(22):7166-80. PubMed ID: 19494139 [Abstract] [Full Text] [Related]
2. In multiple-step gaze shifts: omnipause (OPNs) and collicular fixation neurons encode gaze position error; OPNs gate saccades. Bergeron A, Guitton D. J Neurophysiol; 2002 Oct 03; 88(4):1726-42. PubMed ID: 12364502 [Abstract] [Full Text] [Related]
3. Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations. Matsuo S, Bergeron A, Guitton D. J Neurosci; 2004 Mar 17; 24(11):2760-73. PubMed ID: 15028769 [Abstract] [Full Text] [Related]
4. Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control. Choi WY, Guitton D. Neuron; 2006 May 04; 50(3):491-505. PubMed ID: 16675402 [Abstract] [Full Text] [Related]
5. Evidence against a moving hill in the superior colliculus during saccadic eye movements in the monkey. Soetedjo R, Kaneko CR, Fuchs AF. J Neurophysiol; 2002 Jun 04; 87(6):2778-89. PubMed ID: 12037180 [Abstract] [Full Text] [Related]
6. Comparison of saccades perturbed by stimulation of the rostral superior colliculus, the caudal superior colliculus, and the omnipause neuron region. Gandhi NJ, Keller EL. J Neurophysiol; 1999 Dec 04; 82(6):3236-53. PubMed ID: 10601457 [Abstract] [Full Text] [Related]
7. Activity of neurons in monkey superior colliculus during interrupted saccades. Munoz DP, Waitzman DM, Wurtz RH. J Neurophysiol; 1996 Jun 04; 75(6):2562-80. PubMed ID: 8793764 [Abstract] [Full Text] [Related]
8. Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys. Pathmanathan JS, Presnell R, Cromer JA, Cullen KE, Waitzman DM. Exp Brain Res; 2006 Jan 04; 168(4):455-70. PubMed ID: 16292575 [Abstract] [Full Text] [Related]
9. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity. Knight TA. Neuroscience; 2012 Dec 06; 225():213-36. PubMed ID: 22944386 [Abstract] [Full Text] [Related]
10. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat. Paré M, Guitton D. J Neurophysiol; 1998 Jun 06; 79(6):3060-76. PubMed ID: 9636108 [Abstract] [Full Text] [Related]
12. Neural network models for the gaze shift system in the superior colliculus and cerebellum. Wang X, Jin J, Jabri M. Neural Netw; 2002 Sep 06; 15(7):811-32. PubMed ID: 14672160 [Abstract] [Full Text] [Related]
14. Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. Munoz DP, Wurtz RH. J Neurophysiol; 1995 Jun 06; 73(6):2334-48. PubMed ID: 7666142 [Abstract] [Full Text] [Related]
18. Neuronal activity in the superior colliculus related to saccade initiation during coordinated gaze-reach movements. Reyes-Puerta V, Philipp R, Lindner W, Hoffmann KP. Eur J Neurosci; 2011 Dec 06; 34(12):1966-82. PubMed ID: 22128795 [Abstract] [Full Text] [Related]
19. Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity. Paré M, Crommelinck M, Guitton D. Exp Brain Res; 1994 Dec 06; 101(1):123-39. PubMed ID: 7843291 [Abstract] [Full Text] [Related]