These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
728 related items for PubMed ID: 19494747
1. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis: a biomechanical analysis. Sun E, Alkalay R, Vader D, Snyder BD. J Spinal Disord Tech; 2009 Jun; 22(4):270-7. PubMed ID: 19494747 [Abstract] [Full Text] [Related]
2. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation. Murakami H, Tsai KJ, Attallah-Wasif ES, Yamazaki K, Shimamura T, Hutton WC. Spine (Phila Pa 1976); 2006 Apr 20; 31(9):967-71. PubMed ID: 16641771 [Abstract] [Full Text] [Related]
3. Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique. Mahar AT, Bagheri R, Oka R, Kostial P, Akbarnia BA. Spine J; 2008 Apr 20; 8(6):933-9. PubMed ID: 18082463 [Abstract] [Full Text] [Related]
4. Pedicle screw augmentation with polyethylene tape: a biomechanical study in the osteoporotic thoracolumbar spine. Hamasaki T, Tanaka N, Kim J, Okada M, Ochi M, Hutton WC. J Spinal Disord Tech; 2010 Apr 20; 23(2):127-32. PubMed ID: 20051920 [Abstract] [Full Text] [Related]
5. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques. Espinoza-Larios A, Ames CP, Chamberlain RH, Sonntag VK, Dickman CA, Crawford NR. Spine J; 2007 Apr 20; 7(2):194-204. PubMed ID: 17321969 [Abstract] [Full Text] [Related]
6. Cortical bone trajectory for lumbar pedicle screws. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Spine J; 2009 May 20; 9(5):366-73. PubMed ID: 18790684 [Abstract] [Full Text] [Related]
7. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Burval DJ, McLain RF, Milks R, Inceoglu S. Spine (Phila Pa 1976); 2007 May 01; 32(10):1077-83. PubMed ID: 17471088 [Abstract] [Full Text] [Related]
8. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws. Kuklo TR, Dmitriev AE, Cardoso MJ, Lehman RA, Erickson M, Gill NW. Spine (Phila Pa 1976); 2008 Jul 01; 33(15):E482-7. PubMed ID: 18594445 [Abstract] [Full Text] [Related]
9. Novel dual-rod screw for thoracoscopic anterior instrumentation: biomechanical evaluation compared with single-rod and double-screw/double-rod anterior constructs. Zhang H, Sucato DJ, Pierce WA, Ross D. Spine (Phila Pa 1976); 2009 Mar 01; 34(5):E183-8. PubMed ID: 19247158 [Abstract] [Full Text] [Related]
10. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Liljenqvist U, Hackenberg L, Link T, Halm H. Acta Orthop Belg; 2001 Apr 01; 67(2):157-63. PubMed ID: 11383294 [Abstract] [Full Text] [Related]
11. Biomechanical comparison of four C1 to C2 rigid fixative techniques: anterior transarticular, posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws. Lapsiwala SB, Anderson PA, Oza A, Resnick DK. Neurosurgery; 2006 Mar 01; 58(3):516-21; discussion 516-21. PubMed ID: 16528192 [Abstract] [Full Text] [Related]
13. A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation. van Laar W, Meester RJ, Smit TH, van Royen BJ. Eur Spine J; 2007 Aug 01; 16(8):1209-14. PubMed ID: 17203270 [Abstract] [Full Text] [Related]
14. Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation. Chiba M, McLain RF, Yerby SA, Moseley TA, Smith TS, Benson DR. Spine (Phila Pa 1976); 1996 Feb 01; 21(3):288-94. PubMed ID: 8742203 [Abstract] [Full Text] [Related]
15. Junction kinematics between proximal mobile and distal fused lumbar segments: biomechanical analysis of pedicle and hook constructs. Hongo M, Gay RE, Zhao KD, Ilharreborde B, Huddleston PM, Berglund LJ, An KN, Zhao C. Spine J; 2009 Oct 01; 9(10):846-53. PubMed ID: 19660990 [Abstract] [Full Text] [Related]
16. Biomechanical analysis of 4 types of pedicle screws for scoliotic spine instrumentation. Wang X, Aubin CE, Crandall D, Parent S, Labelle H. Spine (Phila Pa 1976); 2012 Jun 15; 37(14):E823-35. PubMed ID: 22310096 [Abstract] [Full Text] [Related]
17. Biomechanical evaluation of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Cordista A, Conrad B, Horodyski M, Walters S, Rechtine G. Spine J; 2006 Jun 15; 6(4):444-9. PubMed ID: 16825053 [Abstract] [Full Text] [Related]
18. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support. Zhang H, Johnston CE, Pierce WA, Ashman RB, Bronson DG, Haideri NF. Spine (Phila Pa 1976); 2006 Dec 01; 31(25):E934-40. PubMed ID: 17139209 [Abstract] [Full Text] [Related]
19. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec JC, Dickman CA. Spine (Phila Pa 1976); 2006 Apr 01; 31(7):762-8. PubMed ID: 16582849 [Abstract] [Full Text] [Related]
20. Biomechanical and clinical evaluation of a novel technique for surgical repair of spondylolysis in adolescents. Ulibarri JA, Anderson PA, Escarcega T, Mann D, Noonan KJ. Spine (Phila Pa 1976); 2006 Aug 15; 31(18):2067-72. PubMed ID: 16915090 [Abstract] [Full Text] [Related] Page: [Next] [New Search]