These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 19496947

  • 21. Expression of α-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids.
    Avila CA, Arevalo-Soliz LM, Lorence A, Goggin FL.
    Mol Plant Microbe Interact; 2013 Aug; 26(8):977-86. PubMed ID: 23634839
    [Abstract] [Full Text] [Related]

  • 22. Mi-1-Mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades.
    Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I.
    Mol Plant Microbe Interact; 2006 Jun; 19(6):655-64. PubMed ID: 16776299
    [Abstract] [Full Text] [Related]

  • 23. Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling.
    Gao LL, Kamphuis LG, Kakar K, Edwards OR, Udvardi MK, Singh KB.
    New Phytol; 2010 Jun; 186(4):980-994. PubMed ID: 20345634
    [Abstract] [Full Text] [Related]

  • 24. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J, ten Have A, van Kan JA.
    Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587
    [Abstract] [Full Text] [Related]

  • 25. cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes.
    Sobhy IS, Woodcock CM, Powers SJ, Caulfield JC, Pickett JA, Birkett MA.
    J Chem Ecol; 2017 Jan; 43(1):39-52. PubMed ID: 28130741
    [Abstract] [Full Text] [Related]

  • 26. Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway.
    Martinez de Ilarduya O, Nombela G, Hwang CF, Williamson VM, Muñiz M, Kaloshian I.
    Mol Plant Microbe Interact; 2004 Jan; 17(1):55-61. PubMed ID: 14714868
    [Abstract] [Full Text] [Related]

  • 27. Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato.
    Digilio MC, Corrado G, Sasso R, Coppola V, Iodice L, Pasquariello M, Bossi S, Maffei ME, Coppola M, Pennacchio F, Rao R, Guerrieri E.
    New Phytol; 2010 Sep; 187(4):1089-1101. PubMed ID: 20546139
    [Abstract] [Full Text] [Related]

  • 28. Preinfestations of tomato plants by whiteflies (Bemisia tabaci) or aphids (Macrosiphum euphorbiae) induce variable resistance or susceptibility responses.
    Nombela G, Garzo E, Duque M, Muñiz M.
    Bull Entomol Res; 2009 Apr; 99(2):183-91. PubMed ID: 18947449
    [Abstract] [Full Text] [Related]

  • 29. Developmental regulation of Mi-mediated aphid resistance is independent of Mi-1.2 transcript levels.
    Goggin FL, Shah G, Williamson VM, Ullman DE.
    Mol Plant Microbe Interact; 2004 May; 17(5):532-6. PubMed ID: 15141957
    [Abstract] [Full Text] [Related]

  • 30. Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: investigation by a proteomic approach.
    Francis F, Guillonneau F, Leprince P, De Pauw E, Haubruge E, Jia L, Goggin FL.
    J Insect Physiol; 2010 Jun; 56(6):575-85. PubMed ID: 19962988
    [Abstract] [Full Text] [Related]

  • 31. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants.
    Cascone P, Iodice L, Maffei ME, Bossi S, Arimura G, Guerrieri E.
    J Plant Physiol; 2015 Jan 15; 173():28-32. PubMed ID: 25462075
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate.
    Kerchev PI, Fenton B, Foyer CH, Hancock RD.
    Plant Cell Environ; 2012 Feb 15; 35(2):430-40. PubMed ID: 21736590
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci.
    Nombela G, Williamson VM, Muñiz M.
    Mol Plant Microbe Interact; 2003 Jul 15; 16(7):645-9. PubMed ID: 12848430
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Glandular trichome-derived sesquiterpenes of wild tomato accessions (Solanum habrochaites) affect aphid performance and feeding behavior.
    Wang F, Park YL, Gutensohn M.
    Phytochemistry; 2020 Dec 15; 180():112532. PubMed ID: 33045464
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Virus-induced gene silencing suggests (1,3;1,4)-β-glucanase is a susceptibility factor in the compatible russian wheat aphid-wheat interaction.
    Anderson VA, Haley SD, Peairs FB, van Eck L, Leach JE, Lapitan NL.
    Mol Plant Microbe Interact; 2014 Sep 15; 27(9):913-22. PubMed ID: 24964057
    [Abstract] [Full Text] [Related]

  • 40. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.
    Poch HL, López RH, Kanyuka K.
    Plant Cell Environ; 2006 Jul 15; 29(7):1372-8. PubMed ID: 17080958
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.