These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1093 related items for PubMed ID: 19501069

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The impact of prefrontal cortex for selective attention in a visual working memory task.
    Schreppel TJ, Pauli P, Ellgring H, Fallgatter AJ, Herrmann MJ.
    Int J Neurosci; 2008 Dec; 118(12):1673-88. PubMed ID: 18937114
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R, Kaufmann C, Tucha O, Auer DP, Lange KW.
    Brain Res; 2006 May 23; 1090(1):146-55. PubMed ID: 16643867
    [Abstract] [Full Text] [Related]

  • 8. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention.
    Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK.
    Neuron; 2008 Nov 26; 60(4):709-19. PubMed ID: 19038226
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Motion direction tuning in human visual cortex.
    Mercier M, Schwartz S, Michel CM, Blanke O.
    Eur J Neurosci; 2009 Jan 26; 29(2):424-34. PubMed ID: 19200244
    [Abstract] [Full Text] [Related]

  • 11. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP, Slotnick SD.
    Brain Res; 2009 Dec 11; 1302():157-66. PubMed ID: 19765554
    [Abstract] [Full Text] [Related]

  • 12. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL, Sun FT, Dale CL, Miller WL, Simpson GV.
    Neuroreport; 2008 Jan 22; 19(2):155-9. PubMed ID: 18185100
    [Abstract] [Full Text] [Related]

  • 13. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ, Green JJ.
    Brain Res; 2008 Aug 28; 1227():96-109. PubMed ID: 18621037
    [Abstract] [Full Text] [Related]

  • 14. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T, Hirsch J.
    Nat Neurosci; 2005 Dec 28; 8(12):1784-90. PubMed ID: 16286928
    [Abstract] [Full Text] [Related]

  • 15. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K, Wilson D, Schmidt M, Stroink G.
    Brain Topogr; 2008 Dec 28; 21(2):86-92. PubMed ID: 18841455
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Induced gamma-band activity is related to the time point of object identification.
    Martinovic J, Gruber T, Hantsch A, Müller MM.
    Brain Res; 2008 Mar 10; 1198():93-106. PubMed ID: 18243166
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Dynamics of emotional effects on spatial attention in the human visual cortex.
    Pourtois G, Vuilleumier P.
    Prog Brain Res; 2006 Mar 10; 156():67-91. PubMed ID: 17015075
    [Abstract] [Full Text] [Related]

  • 20. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW, Schneider W.
    Neuroimage; 2007 Aug 01; 37(1):343-60. PubMed ID: 17553704
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 55.