These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1093 related items for PubMed ID: 19501069

  • 21. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM, Green JJ, McDonald JJ, Ward LM.
    Brain Res; 2009 Dec 15; 1303():97-110. PubMed ID: 19782056
    [Abstract] [Full Text] [Related]

  • 22. The categorization of natural scenes: brain attention networks revealed by dense sensor ERPs.
    Codispoti M, Ferrari V, Junghöfer M, Schupp HT.
    Neuroimage; 2006 Aug 15; 32(2):583-91. PubMed ID: 16750397
    [Abstract] [Full Text] [Related]

  • 23. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence.
    Crottaz-Herbette S, Menon V.
    J Cogn Neurosci; 2006 May 15; 18(5):766-80. PubMed ID: 16768376
    [Abstract] [Full Text] [Related]

  • 24. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study.
    Collignon O, Davare M, Olivier E, De Volder AG.
    Brain Topogr; 2009 May 15; 21(3-4):232-40. PubMed ID: 19199020
    [Abstract] [Full Text] [Related]

  • 25. Fast and slow parietal pathways mediate spatial attention.
    Chambers CD, Payne JM, Stokes MG, Mattingley JB.
    Nat Neurosci; 2004 Mar 15; 7(3):217-8. PubMed ID: 14983182
    [Abstract] [Full Text] [Related]

  • 26. Effects of allocation of visuo-spatial attention to visual stimuli triggering unilateral arm abduction on anticipatory postural control.
    Tomita H, Fujiwara K.
    Clin Neurophysiol; 2008 Sep 15; 119(9):2086-97. PubMed ID: 18620907
    [Abstract] [Full Text] [Related]

  • 27. Emotionally arousing stimuli compete for attention with left hemispace.
    Hartikainen KM, Ogawa KH, Soltani M, Knight RT.
    Neuroreport; 2007 Dec 03; 18(18):1929-33. PubMed ID: 18007189
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Early visual selection in near and far space: an event-related potential study.
    Kasai T.
    Neuroreport; 2008 Jun 11; 19(9):961-4. PubMed ID: 18521001
    [Abstract] [Full Text] [Related]

  • 31. Aging effects on selective attention-related electroencephalographic patterns during face encoding.
    Deiber MP, Rodriguez C, Jaques D, Missonnier P, Emch J, Millet P, Gold G, Giannakopoulos P, Ibañez V.
    Neuroscience; 2010 Nov 24; 171(1):173-86. PubMed ID: 20801196
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J, Rinne T, Degerman A, Alho K.
    Eur J Neurosci; 2007 Jun 24; 25(12):3725-33. PubMed ID: 17610592
    [Abstract] [Full Text] [Related]

  • 34. Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention.
    Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, Kakigi R.
    J Neurophysiol; 2007 May 24; 97(5):3585-96. PubMed ID: 17360823
    [Abstract] [Full Text] [Related]

  • 35. A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency.
    Huang MX, Lee RR, Miller GA, Thoma RJ, Hanlon FM, Paulson KM, Martin K, Harrington DL, Weisend MP, Edgar JC, Canive JM.
    Neuroimage; 2005 Oct 15; 28(1):99-114. PubMed ID: 15979344
    [Abstract] [Full Text] [Related]

  • 36. Differential frontal activation during exogenous and endogenous orientation of visuospatial attention. A near-infrared spectroscopy study.
    Takahashi M, Ikegami M.
    Neuropsychobiology; 2008 Oct 15; 58(2):55-64. PubMed ID: 18832860
    [Abstract] [Full Text] [Related]

  • 37. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L, Young RA, Bowyer SM, Moran JE, Genik RJ, Green CC, Chiang YR, Yu YJ, Liao CC, Seaman S.
    Brain Res; 2009 Jan 28; 1251():162-75. PubMed ID: 18952070
    [Abstract] [Full Text] [Related]

  • 38. Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence.
    Periáñez JA, Maestú F, Barceló F, Fernández A, Amo C, Ortiz Alonso T.
    Neuroimage; 2004 Feb 28; 21(2):687-95. PubMed ID: 14980570
    [Abstract] [Full Text] [Related]

  • 39. Electrocortical correlates of control of selective attention to spatial frequency.
    Grent-'t-Jong T, Böcker KB, Kenemans JL.
    Brain Res; 2006 Aug 11; 1105(1):46-60. PubMed ID: 16690039
    [Abstract] [Full Text] [Related]

  • 40. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention.
    Musso F, Konrad A, Vucurevic G, Schäffner C, Friedrich B, Frech P, Stoeter P, Winterer G.
    Neuroimage; 2006 Feb 15; 29(4):1311-8. PubMed ID: 16406256
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 55.