These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


641 related items for PubMed ID: 19501876

  • 1. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.
    Schaffner M, Bader HP, Scheidegger R.
    Sci Total Environ; 2009 Aug 15; 407(17):4902-15. PubMed ID: 19501876
    [Abstract] [Full Text] [Related]

  • 2. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany.
    Hirt U, Venohr M, Kreins P, Behrendt H.
    Water Sci Technol; 2008 Aug 15; 58(11):2251-8. PubMed ID: 19092203
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of total nitrogen pollution reduction strategies in a river basin: a case study.
    Drolc A, Kondan JZ, Cotman M.
    Water Sci Technol; 2001 Aug 15; 44(6):55-62. PubMed ID: 11700664
    [Abstract] [Full Text] [Related]

  • 4. Statistical modelling of riverine nutrient sources and retention in the Lake Peipsi drainage basin.
    Vassiljev A, Stålnacke P.
    Water Sci Technol; 2005 Aug 15; 51(3-4):309-17. PubMed ID: 15850204
    [Abstract] [Full Text] [Related]

  • 5. ArcEGMO-URBAN--hydrological model for point sources in river basins.
    Biegel M, Schanze J, Krebs P.
    Water Sci Technol; 2005 Aug 15; 52(5):249-56. PubMed ID: 16248202
    [Abstract] [Full Text] [Related]

  • 6. Mass balance approach for assessment of pollution load in the Krishna River.
    Sekhar C, Umamahesh NV.
    J Environ Sci Eng; 2004 Apr 15; 46(2):159-71. PubMed ID: 16649607
    [Abstract] [Full Text] [Related]

  • 7. Diffuse source apportionment of the Po river eutrophying load to the Adriatic sea: assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modelling approach.
    Salvetti R, Azzellino A, Vismara R.
    Chemosphere; 2006 Dec 15; 65(11):2168-77. PubMed ID: 16860842
    [Abstract] [Full Text] [Related]

  • 8. Pollutant sources investigation and remedial strategies development for the Kaoping River Basin, Taiwan.
    Kao CM, Wu FC, Chen KF, Lin TF, Yen YE, Chiang PC.
    Water Sci Technol; 2003 Dec 15; 48(7):97-103. PubMed ID: 14653639
    [Abstract] [Full Text] [Related]

  • 9. Nutrient emissions from diffuse and point sources into the River Danube and its main tributaries for the period of 1998-2000--results and problems.
    Schreiber H, Behrendt H, Constantinescu LT, Cvitanic I, Drumea D, Jabucar D, Juran S, Pataki B, Snishko S, Zessner M.
    Water Sci Technol; 2005 Dec 15; 51(3-4):283-90. PubMed ID: 15850201
    [Abstract] [Full Text] [Related]

  • 10. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK.
    Sci Total Environ; 2006 Jul 15; 365(1-3):223-37. PubMed ID: 16647104
    [Abstract] [Full Text] [Related]

  • 11. Modelling chloride-discharge relationships in Krishna river basin.
    Sekhar MC, Indira Ch.
    Water Sci Technol; 2003 Jul 15; 48(7):57-63. PubMed ID: 14653634
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of non-point sources pollution impacts by integrated 3S information technologies and GWLF modelling.
    Ning SK, Jeng KY, Chang NB.
    Water Sci Technol; 2002 Jul 15; 46(6-7):217-24. PubMed ID: 12380994
    [Abstract] [Full Text] [Related]

  • 13. Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland.
    Lepistö A, Granlund K, Kortelainen P, Räike A.
    Sci Total Environ; 2006 Jul 15; 365(1-3):238-59. PubMed ID: 16624380
    [Abstract] [Full Text] [Related]

  • 14. Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil.
    de Lima Barros AM, do Carmo Sobral M, Gunkel G.
    Water Sci Technol; 2013 Jul 15; 68(2):357-65. PubMed ID: 23863428
    [Abstract] [Full Text] [Related]

  • 15. A decision support system for water quality issues in the Manzanares River (Madrid, Spain).
    Paredes J, Andreu J, Solera A.
    Sci Total Environ; 2010 May 15; 408(12):2576-89. PubMed ID: 20303572
    [Abstract] [Full Text] [Related]

  • 16. Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China.
    Shen Z, Hong Q, Yu H, Liu R.
    Sci Total Environ; 2008 Nov 01; 405(1-3):195-205. PubMed ID: 18639918
    [Abstract] [Full Text] [Related]

  • 17. Integrating spatial land use analysis and mathematical material flow analysis for nutrient management: a case study of the Bang Pakong River Basin in Thailand.
    Kupkanchanakul W, Kwonpongsagoon S, Bader HP, Scheidegger R.
    Environ Manage; 2015 May 01; 55(5):1022-35. PubMed ID: 25573800
    [Abstract] [Full Text] [Related]

  • 18. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin.
    Zhang QL, Chen YX, Jilani G, Shamsi IH, Yu QG.
    J Hazard Mater; 2010 Feb 15; 174(1-3):824-30. PubMed ID: 19853378
    [Abstract] [Full Text] [Related]

  • 19. Propagation of uncertainty in diffuse pollution into water quality predictions: application to the River Dender in Flanders, Belgium.
    Vandenberghe V, van Griensven A, Bauwens W, Vanrolleghem PA.
    Water Sci Technol; 2005 Feb 15; 51(3-4):347-54. PubMed ID: 15850208
    [Abstract] [Full Text] [Related]

  • 20. GIS-based quantification of future nutrient loads into Lake Peipsi/Chudskoe using qualitative regional development scenarios.
    Mourad DS, Van der Perk M, Gooch GD, Loigu E, Piirimäe K, Stålnacke P.
    Water Sci Technol; 2005 Feb 15; 51(3-4):355-63. PubMed ID: 15850209
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.