These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
980 related items for PubMed ID: 19504497
1. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Vester D, Rapp E, Gade D, Genzel Y, Reichl U. Proteomics; 2009 Jun; 9(12):3316-27. PubMed ID: 19504497 [Abstract] [Full Text] [Related]
2. Virus-host cell interactions in vaccine production cell lines infected with different human influenza A virus variants: a proteomic approach. Vester D, Rapp E, Kluge S, Genzel Y, Reichl U. J Proteomics; 2010 Aug 05; 73(9):1656-69. PubMed ID: 20435171 [Abstract] [Full Text] [Related]
3. Differential activation of host cell signalling pathways through infection with two variants of influenza A/Puerto Rico/8/34 (H1N1) in MDCK cells. Heynisch B, Frensing T, Heinze K, Seitz C, Genzel Y, Reichl U. Vaccine; 2010 Nov 29; 28(51):8210-8. PubMed ID: 20691654 [Abstract] [Full Text] [Related]
4. [The differential expression of the human lung carcinoma cells infected with high pathogenic avian influenza virus A/Anhui/1/2005 (H5N1)]. Hu XF, Liu QZ, Li C, Dong J, Zhou JF, Wang M, Shu YL, Liu HT, Liang MF, Li DX. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 2008 Jun 29; 22(3):180-2. PubMed ID: 19031696 [Abstract] [Full Text] [Related]
5. Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production-Flow cytometry and mathematical modeling. Schulze-Horsel J, Schulze M, Agalaridis G, Genzel Y, Reichl U. Vaccine; 2009 May 05; 27(20):2712-22. PubMed ID: 19428884 [Abstract] [Full Text] [Related]
6. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection. Dapat C, Saito R, Suzuki H, Horigome T. Virus Res; 2014 Jan 22; 179():53-63. PubMed ID: 24291252 [Abstract] [Full Text] [Related]
7. Functional association between influenza A (H1N1) virus and human. Huang T, Cui W, He ZS, Hu L, Liu F, Wen T, Li Y, Cai Y. Biochem Biophys Res Commun; 2009 Dec 25; 390(4):1111-3. PubMed ID: 19716802 [Abstract] [Full Text] [Related]
8. Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Liu N, Song W, Wang P, Lee K, Chan W, Chen H, Cai Z. Proteomics; 2008 May 25; 8(9):1851-8. PubMed ID: 18398875 [Abstract] [Full Text] [Related]
9. Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Tong A, Wu L, Lin Q, Lau QC, Zhao X, Li J, Chen P, Chen L, Tang H, Huang C, Wei YQ. Proteomics; 2008 May 25; 8(10):2012-23. PubMed ID: 18491315 [Abstract] [Full Text] [Related]
10. [Comparative proteomics research on THP-1 cells infected with Brucella]. Gao YH, Ren C, Ying TY, Wang XL. Wei Sheng Wu Xue Bao; 2006 Aug 25; 46(4):629-34. PubMed ID: 17037068 [Abstract] [Full Text] [Related]
11. Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Schwarzer J, Rapp E, Hennig R, Genzel Y, Jordan I, Sandig V, Reichl U. Vaccine; 2009 Jul 09; 27(32):4325-36. PubMed ID: 19410619 [Abstract] [Full Text] [Related]
12. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B. Proteomics; 2009 May 09; 9(9):2399-407. PubMed ID: 19322775 [Abstract] [Full Text] [Related]
13. Differential nuclear proteomes in response to N-methyl-N'-nitro-N-nitrosoguanidine exposure. Shen J, Zhu H, Xiang X, Yu Y. J Proteome Res; 2009 Jun 09; 8(6):2863-72. PubMed ID: 19364130 [Abstract] [Full Text] [Related]
14. What happens inside lentivirus or influenza virus infected cells: insights into regulation of cellular and viral protein synthesis. Gale M, Katze MG. Methods; 1997 Apr 09; 11(4):383-401. PubMed ID: 9126553 [Abstract] [Full Text] [Related]
15. Proteomic analysis at the subcellular level for host targets against influenza A virus (H1N1). Zhao H, Yang J, Li K, Ding X, Lin R, Ma Y, Liu J, Zhong Z, Qian X, Bo X, Zhou Z, Wang S. Antiviral Res; 2013 Dec 09; 100(3):673-87. PubMed ID: 24161511 [Abstract] [Full Text] [Related]
16. Quantitative analysis of the intramacrophagic Brucella suis proteome reveals metabolic adaptation to late stage of cellular infection. Al Dahouk S, Jubier-Maurin V, Scholz HC, Tomaso H, Karges W, Neubauer H, Köhler S. Proteomics; 2008 Sep 09; 8(18):3862-70. PubMed ID: 18704908 [Abstract] [Full Text] [Related]
17. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Hammer E, Bien S, Salazar MG, Steil L, Scharf C, Hildebrandt P, Schroeder HW, Kroemer HK, Völker U, Ritter CA. Proteomics; 2010 Jan 09; 10(1):99-114. PubMed ID: 20017144 [Abstract] [Full Text] [Related]
18. Primary study on the lesions and specific proteins in BEAS-2B cells induced with the 2009 A (H1N1) influenza virus. Fang S, Zhang K, Wang T, Wang X, Lu X, Peng B, Wu W, Zhang R, Chen S, Zhang R, Xue H, Yu M, Cheng J. Appl Microbiol Biotechnol; 2014 Dec 09; 98(23):9691-701. PubMed ID: 24903817 [Abstract] [Full Text] [Related]
19. Comparison of two anoxia models in rainbow trout cells by a 2-DE and MS/MS-based proteome approach. Wulff T, Hoffmann EK, Roepstorff P, Jessen F. Proteomics; 2008 May 09; 8(10):2035-44. PubMed ID: 18491317 [Abstract] [Full Text] [Related]
20. Hijacking of the host-cell response and translational control during influenza virus infection. Kash JC, Goodman AG, Korth MJ, Katze MG. Virus Res; 2006 Jul 09; 119(1):111-20. PubMed ID: 16630668 [Abstract] [Full Text] [Related] Page: [Next] [New Search]