These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 19518657
1. Prediction that uniaxial tension along <111> produces a direct band gap in germanium. Zhang F, Crespi VH, Zhang P. Phys Rev Lett; 2009 Apr 17; 102(15):156401. PubMed ID: 19518657 [Abstract] [Full Text] [Related]
2. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain. Peng X, Tang F, Logan P. J Phys Condens Matter; 2011 Mar 23; 23(11):115502. PubMed ID: 21358032 [Abstract] [Full Text] [Related]
3. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure. Huang ZM, Huang WQ, Liu SR, Dong TG, Wang G, Wu XK, Qin CJ. Sci Rep; 2016 Apr 21; 6():24802. PubMed ID: 27097990 [Abstract] [Full Text] [Related]
4. Genomic design of strong direct-gap optical transition in Si/Ge core/multishell nanowires. Zhang L, d'Avezac M, Luo JW, Zunger A. Nano Lett; 2012 Feb 08; 12(2):984-91. PubMed ID: 22216831 [Abstract] [Full Text] [Related]
7. Composition-dependent band gaps and indirect-direct band gap transitions of group-IV semiconductor alloys. Zhu Z, Xiao J, Sun H, Hu Y, Cao R, Wang Y, Zhao L, Zhuang J. Phys Chem Chem Phys; 2015 Sep 07; 17(33):21605-10. PubMed ID: 26222374 [Abstract] [Full Text] [Related]
8. Heterogeneously-Grown Tunable Tensile Strained Germanium on Silicon for Photonic Devices. Clavel M, Saladukha D, Goley PS, Ochalski TJ, Murphy-Armando F, Bodnar RJ, Hudait MK. ACS Appl Mater Interfaces; 2015 Dec 09; 7(48):26470-81. PubMed ID: 26561963 [Abstract] [Full Text] [Related]
9. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells. Pizzi G, Virgilio M, Grosso G. Nanotechnology; 2010 Feb 05; 21(5):055202. PubMed ID: 20023310 [Abstract] [Full Text] [Related]
10. The Limits of Electromechanical Coupling in Highly-Tensile Strained Germanium. Ran S, Glen TS, Li B, Shi D, Choi IS, Fitzgerald EA, Boles ST. Nano Lett; 2020 May 13; 20(5):3492-3498. PubMed ID: 32302152 [Abstract] [Full Text] [Related]
12. Band gap engineering of FeS2 under biaxial strain: a first principles study. Xiao P, Fan XL, Liu LM, Lau WM. Phys Chem Chem Phys; 2014 Nov 28; 16(44):24466-72. PubMed ID: 25308322 [Abstract] [Full Text] [Related]
13. Strain-modulated Ge superlattices. Virgilio M, Grosso G. J Phys Condens Matter; 2015 Dec 09; 27(48):485305. PubMed ID: 26569138 [Abstract] [Full Text] [Related]
16. Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays. Keplinger M, Grifone R, Greil J, Kriegner D, Persson J, Lugstein A, Schülli T, Stangl J. Nanotechnology; 2016 Feb 05; 27(5):055705. PubMed ID: 26753909 [Abstract] [Full Text] [Related]
19. Inducing novel electronic properties in <112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study. Zhang C, De Sarkar A, Zhang RQ. J Phys Condens Matter; 2012 Jan 11; 24(1):015301. PubMed ID: 22133518 [Abstract] [Full Text] [Related]