These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 19521729
1. Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. Vainberg S, Condee CW, Steffan RJ. J Ind Microbiol Biotechnol; 2009 Sep; 36(9):1189-97. PubMed ID: 19521729 [Abstract] [Full Text] [Related]
2. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Lee IS, Bae JH, McCarty PL. J Contam Hydrol; 2007 Oct 30; 94(1-2):76-85. PubMed ID: 17610987 [Abstract] [Full Text] [Related]
3. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures. Sekar R, Taillefert M, DiChristina TJ. Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932 [Abstract] [Full Text] [Related]
4. Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. Zhao S, He J. FEMS Microbiol Ecol; 2019 Jan 01; 95(1):. PubMed ID: 30339222 [Abstract] [Full Text] [Related]
5. Microbial ecology of chlorinated solvent biodegradation. David MM, Cecillon S, Warne BM, Prestat E, Jansson JK, Vogel TM. Environ Microbiol; 2015 Dec 01; 17(12):4835-50. PubMed ID: 24517489 [Abstract] [Full Text] [Related]
6. Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Cupples AM, Spormann AM, McCarty PL. Environ Sci Technol; 2004 Sep 15; 38(18):4768-74. PubMed ID: 15487786 [Abstract] [Full Text] [Related]
7. Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld. Cichocka D, Nikolausz M, Haest PJ, Nijenhuis I. FEMS Microbiol Ecol; 2010 May 15; 72(2):297-310. PubMed ID: 20507364 [Abstract] [Full Text] [Related]
8. Dehalococcoides and general bacterial ecology of differentially trichloroethene dechlorinating flow-through columns. Mirza BS, Sorensen DL, McGlinn DJ, Dupont RR, McLean JE. Appl Microbiol Biotechnol; 2017 Jun 15; 101(11):4799-4813. PubMed ID: 28213734 [Abstract] [Full Text] [Related]
9. Anaerobic bioremediation of groundwater containing a mixture of 1,1,2,2-tetrachloroethane and chloroethenes. Aulenta F, Potalivo M, Majone M, Papini MP, Tandoi V. Biodegradation; 2006 Jun 15; 17(3):193-206. PubMed ID: 16715399 [Abstract] [Full Text] [Related]
10. Dehalococcoides abundance and alternate electron acceptor effects on large, flow-through trichloroethene dechlorinating columns. Mirza BS, Sorensen DL, Dupont RR, McLean JE. Appl Microbiol Biotechnol; 2016 Mar 15; 100(5):2367-79. PubMed ID: 26536878 [Abstract] [Full Text] [Related]
11. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone. Cápiro NL, Löffler FE, Pennell KD. J Contam Hydrol; 2015 Nov 15; 182():78-90. PubMed ID: 26348832 [Abstract] [Full Text] [Related]
12. Engineered in situ biogeochemical transformation as a secondary treatment following ISCO - A field test. Němeček J, Nechanická M, Špánek R, Eichler F, Zeman J, Černík M. Chemosphere; 2019 Dec 15; 237():124460. PubMed ID: 31374391 [Abstract] [Full Text] [Related]
13. Preparation and characterization of site-specific dechlorinating microbial inocula capable of complete dechlorination enriched in anaerobic microcosms amended with clay mineral. Nagymáté Z, Jurecska L, Romsics C, Tóth F, Bódai V, Mészáros É, Szabó A, Erdélyi B, Márialigeti K. World J Microbiol Biotechnol; 2020 Feb 03; 36(2):29. PubMed ID: 32016527 [Abstract] [Full Text] [Related]
14. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Aulenta F, Bianchi A, Majone M, Petrangeli Papini M, Potalivo M, Tandoi V. Environ Int; 2005 Feb 03; 31(2):185-90. PubMed ID: 15661281 [Abstract] [Full Text] [Related]
15. Rapid Enrichment of Dehalococcoides-Like Bacteria by Partial Hydrophobic Separation. Temme HR, Sande K, Yan T, Novak PJ. Appl Environ Microbiol; 2017 Mar 15; 83(6):. PubMed ID: 28087526 [Abstract] [Full Text] [Related]
16. Fundamental things apply: the case of Dehalococcoides ethenogenes. Maymó-Gatell X. Int Microbiol; 2005 Jun 15; 8(2):137-40. PubMed ID: 16052463 [No Abstract] [Full Text] [Related]
17. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. Yang Y, Higgins SA, Yan J, Şimşir B, Chourey K, Iyer R, Hettich RL, Baldwin B, Ogles DM, Löffler FE. ISME J; 2017 Dec 15; 11(12):2767-2780. PubMed ID: 28809851 [Abstract] [Full Text] [Related]
18. Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance. Fletcher KE, Costanza J, Cruz-Garcia C, Ramaswamy NS, Pennell KD, Löffler FE. Environ Sci Technol; 2011 Jan 15; 45(2):712-8. PubMed ID: 21126083 [Abstract] [Full Text] [Related]
19. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites. Scheutz C, Durant ND, Broholm MM. Biodegradation; 2014 Jun 15; 25(3):459-78. PubMed ID: 24233554 [Abstract] [Full Text] [Related]
20. Bio-reduction of tetrachloroethen using a H2-based membrane biofilm reactor and community fingerprinting. Karataş S, Hasar H, Taşkan E, Özkaya B, Şahinkaya E. Water Res; 2014 Jul 01; 58():21-8. PubMed ID: 24731873 [Abstract] [Full Text] [Related] Page: [Next] [New Search]