These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
413 related items for PubMed ID: 19522476
1. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference. Ji N, Ruan W, Wang C, Lu Z, Zhao B. Langmuir; 2009 Oct 06; 25(19):11869-73. PubMed ID: 19522476 [Abstract] [Full Text] [Related]
2. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates. Liu J, Meng G, Li X, Huang Z. Langmuir; 2014 Nov 25; 30(46):13964-9. PubMed ID: 25361441 [Abstract] [Full Text] [Related]
3. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics. Chen J, Feng S, Gao F, Grant E, Xu J, Wang S, Huang Q, Lu X. J Food Sci; 2015 Apr 25; 80(4):N834-40. PubMed ID: 25736080 [Abstract] [Full Text] [Related]
4. Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors. Huang CH, Lin HY, Chen S, Liu CY, Chui HC, Tzeng Y. Opt Express; 2011 Jun 06; 19(12):11441-50. PubMed ID: 21716375 [Abstract] [Full Text] [Related]
5. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates. Zhou Q, Meng G, Huang Q, Zhu C, Tang H, Qian Y, Chen B, Chen B. Phys Chem Chem Phys; 2014 Feb 28; 16(8):3686-92. PubMed ID: 24419246 [Abstract] [Full Text] [Related]
6. Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Liu CY, Ram R, Kolaru RB, Jana AS, Sadhu AS, Chu CS, Lin YN, Pal BN, Chang SH, Biring S. Biosensors (Basel); 2022 Sep 29; 12(10):. PubMed ID: 36290944 [Abstract] [Full Text] [Related]
7. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays. Huang CH, Lin HY, Lau BC, Liu CY, Chui HC, Tzeng Y. Opt Express; 2010 Dec 20; 18(26):27891-9. PubMed ID: 21197062 [Abstract] [Full Text] [Related]
8. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection. Kosović M, Balarin M, Ivanda M, Đerek V, Marciuš M, Ristić M, Gamulin O. Appl Spectrosc; 2015 Dec 20; 69(12):1417-24. PubMed ID: 26556231 [Abstract] [Full Text] [Related]
9. Experimental and DFT theoretical studies of surface enhanced Raman scattering effect on the silver nano arrays modified electrode. Zhang L, Fang Y, Wang P. Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul 20; 93():363-6. PubMed ID: 22495219 [Abstract] [Full Text] [Related]
10. Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering. Zhang L, Fang Y, Zhang P. Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan 20; 69(1):91-5. PubMed ID: 17627875 [Abstract] [Full Text] [Related]
11. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N, Li H, Xie Y, Feng Z, Wang Z, Yang Z, Yan X, Wang W, Tian C, Yu H. Electrophoresis; 2019 Dec 20; 40(23-24):3123-3131. PubMed ID: 31576580 [Abstract] [Full Text] [Related]
12. Development of Novel Surface-Enhanced Raman Spectroscopy-Based Biosensors by Controlling the Roughness of Gold/Alumina Platforms for Highly Sensitive Detection of Pyocyanin Secreted from Pseudomonas aeruginosa. El-Said WA, Saleh TS, Al-Bogami AS, Wani MY, Choi JW. Biosensors (Basel); 2024 Aug 19; 14(8):. PubMed ID: 39194628 [Abstract] [Full Text] [Related]
13. Characterization of hotspots in a highly enhancing SERS substrate. Asiala SM, Schultz ZD. Analyst; 2011 Nov 07; 136(21):4472-9. PubMed ID: 21946698 [Abstract] [Full Text] [Related]
14. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. Huang J, Chen F, Zhang Q, Zhan Y, Ma D, Xu K, Zhao Y. ACS Appl Mater Interfaces; 2015 Mar 18; 7(10):5725-35. PubMed ID: 25731067 [Abstract] [Full Text] [Related]
15. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy. Luo Z, Yang W, Peng A, Ma Y, Fu H, Yao J. J Phys Chem A; 2009 Mar 19; 113(11):2467-72. PubMed ID: 19216546 [Abstract] [Full Text] [Related]
16. Surface-enhanced Raman scattering using silver nanocluster on anodic aluminum oxide template sensor toward protein detection. Wong-Ek K, Chailapakul O, Eiamchai P, Horpratum M, Limnonthakul P, Patthanasettakul V, Sutapan B, Tuantranont A, Chindaudom P, Nuntawong N. Biomed Tech (Berl); 2011 Aug 19; 56(4):235-40. PubMed ID: 21824000 [Abstract] [Full Text] [Related]
18. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering-active silver nanoparticles. Yang KH, Chang CM. Anal Chim Acta; 2012 Jun 04; 729():1-6. PubMed ID: 22595427 [Abstract] [Full Text] [Related]
19. [Fabrication of silver ordered nanoarrays SERS-active substrates and their applications in bladder cancer cells detection]. Liu Y, Huang LQ, Wang J, Tong HM, Yuan L, Zhao LH, Zhang WW, Wang L, Zhu J. Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Feb 04; 32(2):386-90. PubMed ID: 22512174 [Abstract] [Full Text] [Related]
20. Quantitative surface enhanced Raman scattering detection based on the "sandwich" structure substrate. Zhang J, Qu S, Zhang L, Tang A, Wang Z. Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug 04; 79(3):625-30. PubMed ID: 21531614 [Abstract] [Full Text] [Related] Page: [Next] [New Search]