These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 19525006
21. Assessing toxicity of nanoparticles using Brachionus manjavacas (Rotifera). Snell TW, Hicks DG. Environ Toxicol; 2011 Apr; 26(2):146-52. PubMed ID: 19760615 [Abstract] [Full Text] [Related]
22. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR. Environ Pollut; 2015 Apr; 199():10-7. PubMed ID: 25617854 [Abstract] [Full Text] [Related]
23. Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles. Zuykov M, Pelletier E, Belzile C, Demers S. Chemosphere; 2011 Jul; 84(5):701-6. PubMed ID: 21459411 [Abstract] [Full Text] [Related]
24. Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Canesi L, Ciacci C, Betti M, Fabbri R, Canonico B, Fantinati A, Marcomini A, Pojana G. Environ Int; 2008 Nov; 34(8):1114-9. PubMed ID: 18486973 [Abstract] [Full Text] [Related]
25. Redox proteomics in the mussel, Mytilus edulis. McDonagh B, Tyther R, Sheehan D. Mar Environ Res; 2006 Jul; 62 Suppl():S101-4. PubMed ID: 16684561 [Abstract] [Full Text] [Related]
26. Profiles and levels of fatty acid esters of okadaic acid group toxins and pectenotoxins during toxin depuration. Part II: blue mussels (Mytilus edulis) and flat oyster (Ostrea edulis). Torgersen T, Sandvik M, Lundve B, Lindegarth S. Toxicon; 2008 Sep 01; 52(3):418-27. PubMed ID: 18619990 [Abstract] [Full Text] [Related]
27. Processing of antifouling paint particles by Mytilus edulis. Turner A, Barrett M, Brown MT. Environ Pollut; 2009 Jan 01; 157(1):215-20. PubMed ID: 18774207 [Abstract] [Full Text] [Related]
28. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Moore MN. Environ Int; 2006 Dec 01; 32(8):967-76. PubMed ID: 16859745 [Abstract] [Full Text] [Related]
29. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. von Moos N, Burkhardt-Holm P, Köhler A. Environ Sci Technol; 2012 Oct 16; 46(20):11327-35. PubMed ID: 22963286 [Abstract] [Full Text] [Related]
30. Retention of radioactive particles and associated effects in the filter-feeding marine mollusc Mytilus edulis. Jaeschke BC, Lind OC, Bradshaw C, Salbu B. Sci Total Environ; 2015 Jan 01; 502():1-7. PubMed ID: 25240099 [Abstract] [Full Text] [Related]
31. Sublethal impact of short term exposure to the organophosphate pesticide azamethiphos in the marine mollusc Mytilus edulis. Canty MN, Hagger JA, Moore RT, Cooper L, Galloway TS. Mar Pollut Bull; 2007 Apr 01; 54(4):396-402. PubMed ID: 17266995 [Abstract] [Full Text] [Related]
32. Retention and distribution of methylmercury administered in the food in marine invertebrates: Effect of dietary selenium. Bjerregaard P, St John T, Biuki NA, Biserova MP, Christensen A, Pedersen KL. Mar Environ Res; 2018 Jul 01; 138():76-83. PubMed ID: 29706366 [Abstract] [Full Text] [Related]
33. Effect of dispersed crude oil on the feeding activity, retention efficiency, and filtration rate of differently sized blue mussels (Mytilus edulis). Redmond KJ, Berry M, Sanni S, Andersen OK. J Toxicol Environ Health A; 2016 Jul 01; 79(13-15):658-74. PubMed ID: 27484145 [Abstract] [Full Text] [Related]
34. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. Montes MO, Hanna SK, Lenihan HS, Keller AA. J Hazard Mater; 2012 Jul 30; 225-226():139-45. PubMed ID: 22614026 [Abstract] [Full Text] [Related]
35. The effects of silver nanoparticles on oyster embryos. Ringwood AH, McCarthy M, Bates TC, Carroll DL. Mar Environ Res; 2010 Jul 30; 69 Suppl():S49-51. PubMed ID: 19913905 [Abstract] [Full Text] [Related]
36. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity. Kell AJ, Somaskandan K, Stewart G, Bergeron MG, Simard B. Langmuir; 2008 Apr 01; 24(7):3493-502. PubMed ID: 18290685 [Abstract] [Full Text] [Related]
37. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Canesi L, Ciacci C, Bergami E, Monopoli MP, Dawson KA, Papa S, Canonico B, Corsi I. Mar Environ Res; 2015 Oct 01; 111():34-40. PubMed ID: 26115607 [Abstract] [Full Text] [Related]
38. Role of epicellular molecules in the selection of particles by the blue mussel, Mytilus edulis. Espinosa EP, Hassan D, Ward JE, Shumway SE, Allam B. Biol Bull; 2010 Aug 01; 219(1):50-60. PubMed ID: 20813989 [Abstract] [Full Text] [Related]
39. Linking genotoxic responses with cytotoxic and behavioural or physiological consequences: differential sensitivity of echinoderms (Asterias rubens) and marine molluscs (Mytilus edulis). Canty MN, Hutchinson TH, Brown RJ, Jones MB, Jha AN. Aquat Toxicol; 2009 Aug 13; 94(1):68-76. PubMed ID: 19564054 [Abstract] [Full Text] [Related]
40. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, Landsiedel R. Chemosphere; 2009 Sep 13; 76(10):1356-65. PubMed ID: 19580988 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]