These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 19527605
1. The efficiency of Percoll and Ficoll density gradient media in the isolation of marrow derived human mesenchymal stem cells with osteogenic potential. Chang Y, Hsieh PH, Chao CC. Chang Gung Med J; 2009; 32(3):264-75. PubMed ID: 19527605 [Abstract] [Full Text] [Related]
2. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. D'Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. J Bone Miner Res; 1999 Jul; 14(7):1115-22. PubMed ID: 10404011 [Abstract] [Full Text] [Related]
3. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM, Goltry KL. Stem Cells; 2007 Oct; 25(10):2575-82. PubMed ID: 17585167 [Abstract] [Full Text] [Related]
4. Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M. J Bone Miner Res; 2001 Jun; 16(6):1120-9. PubMed ID: 11393789 [Abstract] [Full Text] [Related]
5. CFU-c enrichment from human bone marrow using a discontinuous Percoll gradient and soybean agglutinin in comparison with Ficoll-paque. Georgiou GM, Roberton DM, Ellis WM, Shen BJ, Ekert H, Hosking CS. Clin Exp Immunol; 1983 Aug; 53(2):491-6. PubMed ID: 6309446 [Abstract] [Full Text] [Related]
6. The clonogenic potential of hematopoietic stem cells and mesenchymal stromal cells in various hematologic diseases: a pilot study. Kurt Yüksel M, Topçuoğlu P, Kurdal M, Ilhan O. Cytotherapy; 2010 Aug; 12(1):38-44. PubMed ID: 19878078 [Abstract] [Full Text] [Related]
11. Isolation of human mesenchymal stromal cells is more efficient by red blood cell lysis. Horn P, Bork S, Diehlmann A, Walenda T, Eckstein V, Ho AD, Wagner W. Cytotherapy; 2008 Aug; 10(7):676-85. PubMed ID: 18985474 [Abstract] [Full Text] [Related]
14. IMT504, the prototype of the immunostimulatory oligonucleotides of the PyNTTTTGT class, increases the number of progenitors of mesenchymal stem cells both in vitro and in vivo: potential use in tissue repair therapy. Hernando Insúa A, Montaner AD, Rodriguez JM, Elías F, Fló J, López RA, Zorzopulos J, Hofer EL, Chasseing NA. Stem Cells; 2007 Apr; 25(4):1047-54. PubMed ID: 17420228 [Abstract] [Full Text] [Related]
16. In vivo comparison of hard tissue regeneration with human mesenchymal stem cells processed with either the FICOLL method or the BMAC method. Sauerbier S, Stricker A, Kuschnierz J, Bühler F, Oshima T, Xavier SP, Schmelzeisen R, Gutwald R. Tissue Eng Part C Methods; 2010 Apr; 16(2):215-23. PubMed ID: 19473102 [Abstract] [Full Text] [Related]
17. Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49a molecule. Gindraux F, Selmani Z, Obert L, Davani S, Tiberghien P, Hervé P, Deschaseaux F. Cell Tissue Res; 2007 Mar; 327(3):471-83. PubMed ID: 17109120 [Abstract] [Full Text] [Related]
18. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. Siddappa R, Licht R, van Blitterswijk C, de Boer J. J Orthop Res; 2007 Aug; 25(8):1029-41. PubMed ID: 17469183 [Abstract] [Full Text] [Related]