These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


509 related items for PubMed ID: 19543222

  • 21. Carbon nanotube coating improves neuronal recordings.
    Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW.
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [Abstract] [Full Text] [Related]

  • 22. Activity-dependent structural plasticity.
    Butz M, Wörgötter F, van Ooyen A.
    Brain Res Rev; 2009 May; 60(2):287-305. PubMed ID: 19162072
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Brain-machine interfaces beyond neuroprosthetics.
    Moxon KA, Foffani G.
    Neuron; 2015 Apr 08; 86(1):55-67. PubMed ID: 25856486
    [Abstract] [Full Text] [Related]

  • 25. A high-performance brain-computer interface.
    Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV.
    Nature; 2006 Jul 13; 442(7099):195-8. PubMed ID: 16838020
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. The neurochip: promoting plasticity with a neural implant.
    Lemon R.
    Curr Biol; 2007 Jan 23; 17(2):R54-5. PubMed ID: 17240328
    [Abstract] [Full Text] [Related]

  • 28. Neuromotor prosthetics: brain-computer interfaces, a step closer to benefitting paralyzed patients.
    Mislow JM, Friedlander RM.
    Neurosurgery; 2008 Oct 23; 63(4):N8-9. PubMed ID: 18981872
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.
    Cottaris NP, Elfar SD.
    J Neural Eng; 2009 Apr 23; 6(2):026007. PubMed ID: 19289859
    [Abstract] [Full Text] [Related]

  • 34. Implantable microscale neural interfaces.
    Cheung KC.
    Biomed Microdevices; 2007 Dec 23; 9(6):923-38. PubMed ID: 17252207
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA, Lovell NH, Wallace GG, Poole-Warren LA.
    Biomaterials; 2008 Dec 23; 29(24-25):3393-9. PubMed ID: 18501423
    [Abstract] [Full Text] [Related]

  • 37. Developments in brain-machine interfaces from the perspective of robotics.
    Kim HK, Park S, Srinivasan MA.
    Hum Mov Sci; 2009 Apr 23; 28(2):191-203. PubMed ID: 19230997
    [Abstract] [Full Text] [Related]

  • 38. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems.
    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P.
    J Peripher Nerv Syst; 2005 Sep 23; 10(3):229-58. PubMed ID: 16221284
    [Abstract] [Full Text] [Related]

  • 39. Brain-machine interfaces for motor control: a guide for neuroscience clinicians.
    Martin A, Sankar T, Lipsman N, Lozano AM.
    Can J Neurol Sci; 2012 Jan 23; 39(1):11-22. PubMed ID: 22384491
    [Abstract] [Full Text] [Related]

  • 40. Response of brain tissue to chronically implanted neural electrodes.
    Polikov VS, Tresco PA, Reichert WM.
    J Neurosci Methods; 2005 Oct 15; 148(1):1-18. PubMed ID: 16198003
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 26.