These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 1954345
1. Bacterial protein toxins acting on intracellular targets. Olsnes S, Kozlov JV, van Deurs B, Sandvig K. Semin Cell Biol; 1991 Feb; 2(1):7-14. PubMed ID: 1954345 [Abstract] [Full Text] [Related]
2. Entry mechanisms of protein toxins and picornaviruses. Olsnes S, Sandvig K, Madshus IH, Sundan A. Biochem Soc Symp; 1985 Feb; 50():171-91. PubMed ID: 3915869 [Abstract] [Full Text] [Related]
4. Bacterial protein toxins with latent ADP-ribosyl transferases activities. Lai CY. Adv Enzymol Relat Areas Mol Biol; 1986 Feb; 58():99-140. PubMed ID: 3012972 [No Abstract] [Full Text] [Related]
5. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism. Wilson BA, Collier RJ. Curr Top Microbiol Immunol; 1992 Feb; 175():27-41. PubMed ID: 1628498 [No Abstract] [Full Text] [Related]
6. Entry of protein toxins in polarized epithelial cells. Melby EL, Jacobsen J, Olsnes S, Sandvig K. Cancer Res; 1993 Apr 15; 53(8):1755-60. PubMed ID: 8467493 [Abstract] [Full Text] [Related]
7. Processing of Pseudomonas aeruginosa exotoxin A is dispensable for cell intoxication. Morlon-Guyot J, Méré J, Bonhoure A, Beaumelle B. Infect Immun; 2009 Jul 15; 77(7):3090-9. PubMed ID: 19380469 [Abstract] [Full Text] [Related]
8. Characterization of 3'-azido-3'-deoxythymidine inhibition of ricin and Pseudomonas exotoxin A toxicity in CHO and Vero cells. Wellner RB, Pless DD, Thompson WL. J Cell Physiol; 1994 Jun 15; 159(3):495-505. PubMed ID: 8188764 [Abstract] [Full Text] [Related]
9. Insights into membrane protein folding and translocation from the behavior of bacterial toxins: models for membrane translocation. London E, Ulbrandt ND, Tortorella D, Jiang JX, Abrams FS. Soc Gen Physiol Ser; 1993 Jun 15; 48():45-61. PubMed ID: 8503054 [No Abstract] [Full Text] [Related]
10. Membrane receptors for bacterial toxins. Eidels L, Proia RL, Hart DA. Microbiol Rev; 1983 Dec 15; 47(4):596-620. PubMed ID: 6363900 [No Abstract] [Full Text] [Related]
11. Structure-activity relationships in diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Collier RJ. Cancer Treat Res; 1988 Dec 15; 37():25-35. PubMed ID: 2908628 [No Abstract] [Full Text] [Related]
12. Stealth and mimicry by deadly bacterial toxins. Yates SP, Jørgensen R, Andersen GR, Merrill AR. Trends Biochem Sci; 2006 Feb 15; 31(2):123-33. PubMed ID: 16406634 [Abstract] [Full Text] [Related]
13. Cytotoxic activity of a recombinant chimaeric protein between Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Guidi-Rontani C. Mol Microbiol; 1992 May 15; 6(10):1281-7. PubMed ID: 1640830 [Abstract] [Full Text] [Related]
15. Fusions of anthrax toxin lethal factor to the ADP-ribosylation domain of Pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. Arora N, Klimpel KR, Singh Y, Leppla SH. J Biol Chem; 1992 Aug 05; 267(22):15542-8. PubMed ID: 1639793 [Abstract] [Full Text] [Related]
16. Cell-mediated cleavage of Pseudomonas exotoxin between Arg279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. Ogata M, Fryling CM, Pastan I, FitzGerald DJ. J Biol Chem; 1992 Dec 15; 267(35):25396-401. PubMed ID: 1460035 [Abstract] [Full Text] [Related]
17. Temporal separation of protein toxin translocation from processing events. Hudson TH, Neville DM. J Biol Chem; 1987 Dec 05; 262(34):16484-94. PubMed ID: 3680260 [Abstract] [Full Text] [Related]
18. A dominant-negative approach that prevents diphthamide formation confers resistance to Pseudomonas exotoxin A and diphtheria toxin. Roy V, Ghani K, Caruso M. PLoS One; 2010 Dec 23; 5(12):e15753. PubMed ID: 21203470 [Abstract] [Full Text] [Related]
19. Anthrax toxin-mediated delivery of the Pseudomonas exotoxin A enzymatic domain to the cytosol of tumor cells via cleavable ubiquitin fusions. Bachran C, Morley T, Abdelazim S, Fattah RJ, Liu S, Leppla SH. mBio; 2013 Apr 30; 4(3):e00201-13. PubMed ID: 23631917 [Abstract] [Full Text] [Related]