These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 19544350

  • 1. Carboxymethylated cyclodextrins and their complexes with Pr(III) and Yb(III) as water-soluble chiral NMR solvating agents for cationic compounds.
    Provencher KA, Weber MA, Randall LA, Cunningham PR, Dignam CF, Wenzel TJ.
    Chirality; 2010 Mar; 22(3):336-46. PubMed ID: 19544350
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents.
    O'Farrell CM, Chudomel JM, Collins JM, Dignam CF, Wenzel TJ.
    J Org Chem; 2008 Apr 04; 73(7):2843-51. PubMed ID: 18336044
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Water-soluble calix[4]resorcinarenes as chiral NMR solvating agents for bicyclic aromatic compounds.
    O'Farrell CM, Hagan KA, Wenzel TJ.
    Chirality; 2009 Nov 04; 21(10):911-21. PubMed ID: 19161214
    [Abstract] [Full Text] [Related]

  • 6. Dysprosium(III)-diethylenetriaminepentaacetate complexes of aminocyclodextrins as chiral NMR shift reagents.
    Wenzel TJ, Miles RD, Zomlefer K, Frederique DE, Roan MA, Troughton JS, Pond BV, Colby AL.
    Chirality; 2000 Jan 04; 12(1):30-7. PubMed ID: 10602264
    [Abstract] [Full Text] [Related]

  • 7. Water-soluble calix[4]resorcarenes as enantioselective NMR shift reagents for aromatic compounds.
    Dignam CF, Zopf JJ, Richards CJ, Wenzel TJ.
    J Org Chem; 2005 Sep 30; 70(20):8071-8. PubMed ID: 16277329
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Enantiomeric separation of a group of chiral dihydropyridines by electrokinetic chromatography.
    García-Ruiz C, Marina ML.
    Electrophoresis; 2000 May 30; 21(8):1565-73. PubMed ID: 10832889
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Enantiodifferentiation of alpha-hydroxyalkanephosphonic acids in 31P NMR with application of alpha-cyclodextrin as chiral discriminating agent.
    Rudzińska E, Dziedzioła G, Berlicki L, Kafarski P.
    Chirality; 2010 Jan 30; 22(1):63-8. PubMed ID: 19306429
    [Abstract] [Full Text] [Related]

  • 17. Optimal configurations of "capped" beta-cyclodextrin dimers in water maximise hydrophobic association.
    Gamieldien MR, Maestre I, Jaime C, Naidoo KJ.
    Chemphyschem; 2010 Feb 01; 11(2):452-9. PubMed ID: 20014087
    [Abstract] [Full Text] [Related]

  • 18. Chiral separation of anionic and neutral compounds using a hepta-substituted cationic beta-cyclodextrin as a chiral selector in capillary electrophoresis.
    Lee D, Shamsi SA.
    Electrophoresis; 2002 May 01; 23(9):1314-9. PubMed ID: 12007132
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. NMR spectroscopic study of cyclodextrin inclusion complexes with A-007 prodrugs.
    Sagiraju S, Jursic BS.
    Carbohydr Res; 2008 May 19; 343(7):1180-90. PubMed ID: 18384761
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.